材料和几何尺寸对充气硬盘磁头滑块飞行特性的影响
Effects of Materials and Geometric Dimensions on the Flying Characteristics of a Slider in Gas-Filled Hard Disk Drives
DOI: 10.12677/MET.2017.63030, PDF, HTML, XML, 下载: 1,601  浏览: 3,752  国家自然科学基金支持
作者: 杨廷毅, 白雪*, 王辉林, 刘原勇:山东理工大学,机械工程学院,山东 淄博
关键词: 充气硬盘磁头滑块润滑方程飞行特性Gas-Filled Hard Disk Drive Slider Gas Lubrication Equation Flying Characteristics
摘要: 随着硬盘磁记录密度增加,磁头滑块的飞行高度已经小于10纳米,当硬盘遭受外界冲击载荷时,磁头滑块飞行特性参数(最小飞行高度hm、俯仰角α和侧倾角β)会随时间发生变化。通过求解磁头/磁盘界面气膜润滑方程和建立硬盘结构系统有限元模型,本文研究了硬盘外壳材料、悬臂材料、磁盘材料、悬臂厚度、磁盘厚度对磁头滑块飞行特性的影响。研究结果发现:磁盘材料和厚度对磁头滑块飞行特性参数影响较小,悬臂材料和厚度对磁头滑块飞行特性参数影响最大;对于各种不同材料,当硬盘外壳材料为ABS塑料时,磁头滑块飞行特性参数的变化幅度相对最小。
Abstract: With increasing of the magnetic recording density in hard disk drives (HDDs), the flying height of the slider is less than 10 nm. When a HDD is subjected to external shock loadings, the flying para-meters of the slider, including the minimum flying height, the pitch angle, the roll angle, will change over time. By solving the gas film lubrication equation in the head/disk interface and establishing a structural finite element model of a HDD system, effects of HDD cover materials, suspension materials, disk materials, suspension thickness, disk thickness, on the flying characteristics of the slider are studied in this paper. The results show that the disk materials and thicknesses have a less effect on the flying parameters of the slider, the effects of suspension materials and thicknesses on the flying characteristics of the slider are obvious. The flying parameters of the slider are changed least for a HDD with an ABS plastic cover among the studied different materials.
文章引用:杨廷毅, 白雪, 王辉林, 刘原勇. 材料和几何尺寸对充气硬盘磁头滑块飞行特性的影响[J]. 机械工程与技术, 2017, 6(3): 240-249. https://doi.org/10.12677/MET.2017.63030

参考文献

[1] Marchon, B., Pitchford, T., Hsia, Y.T. and Gangopadhyay, S. (2013) The Head-Disk Interface Roadmap to an Areal Density of Tbit/in2. Advances in Tribology, 2013, Article ID: 521086.
[2] 杨书仪, 刘德顺, 赵继云. 基于LS-DYNA的移动硬盘跌落冲击耐碰撞性能分析[J]. 振动与冲击, 2012, 31: 13-17.
[3] Shi, B.J., Shu, D.W., Gu, B. and Lu, G.X. (2008) Static and Dynamic Analysis of Bearing Slider for Small form Factor Drives. International Journal of Modern Physics B, 22, 1391-1396.
[4] Feliss, B., Murthy, A.N. and Talke, F.E. (2007) Microdrive Operational and Non-Operational Shock and Vibration Testing. Microsystem Technologies, 13, 1015-1021.
https://doi.org/10.1007/s00542-006-0308-7
[5] 魏浩东, 敖宏瑞, 姜洪源. 硬盘加载/卸载过程磁头悬臂接触面的动力学仿真[J]. 振动与冲击, 2010, 29(5): 78-81.
[6] 魏浩东, 敖宏瑞, 姜洪源, 皮亚东. 微型硬盘驱动器工作状态下的冲击特性仿真[J]. 振动与冲击, 2011, 30(12): 88-92.
[7] Bhargava, P. and Bogy, D.B. (2007) Numerical Simulation of Operational-Shock in Small form Factor Hard Disk Drives. Journal of Tribology, 129, 153-160.
https://doi.org/10.1115/1.2345403
[8] Aruga, K., Suwa, M., Shimizu, K. and Watanabe, T. (2007) A Study on Positioning Error Caused by Flow Induced Vibration Using Helium-Filled Hard Disk Drives. IEEE Transactions on Magnetics, 43, 3750-3755.
https://doi.org/10.1109/TMAG.2007.902983
[9] Zhou, W., Liu, B., Yu, S., Hua, W. and Gonzaga, L. (2010) Effects of Gas Physical Properties on Flying Performance of Air Bearing Slider. IEEE Transactions on Magnetics, 46, 1389-1392.
https://doi.org/10.1109/TMAG.2009.2039854
[10] Kil, S.W., Humphrey, J.A.C. and Haj-Hariri, H. (2012) Numerical Study of the Flow-Structure Interactions in an Air- or Helium-Filled Simulated Hard Disk Drive. Microsystem Technologies, 18, 57-75.
https://doi.org/10.1007/s00542-011-1375-y
[11] Fukui, S. and Kaneko, R. (1988) Analysis of Flying Characteristics of Magnetic Heads With Ultra-Thin Spacing Based on the Boltzamann Equation. IEEE Transactions on Magnetics, 24, 2751-2753.
https://doi.org/10.1109/20.92234
[12] Fukui, S. and Kaneko, R. (1990) A Database for Interpolation of Poiseuille Flow Rates for High Knudsen Number Lubrication Problems. Journal of Tribology, 112, 78-83.
https://doi.org/10.1115/1.2920234
[13] Shi, B.J. and Yang, T.Y. (2010) Simplified Model of Reynolds Equation with Linearized Flow Rate for Ultra-Thin Gas Film Lubrication in Hard Disk Drives. Microsystem Technologies, 16, 1727-1734.
https://doi.org/10.1007/s00542-010-1107-8
[14] 杨廷毅, 史宝军, 葛培琪, 白雪. 考虑磁头表面高度不连续性气膜润滑的数值模拟与有效算法[J]. 计算力学学报, 2013, 30(3): 376-380.
[15] Yang, T.Y., Shi, B.J., Ge, P.Q. and Bai, X. (2012) Adaptive Grid Generation Technique of Sub-5nm Flying Height Air Bearing Slider with Clearance Discontinuities. Microsystem Technologies,18, 2017-2026.
https://doi.org/10.1007/s00542-012-1536-7
[16] Shu, D.W., Shi, B.J., Meng, H., Yap, F.F., Jiang, D.Z., Ng, Q., Zambri, R., Lau, J.H.T. and Cheng, C.S. (2007) Shock Analysis of a Head Actuator Assembly Subjected to Half-Sine Acceleration Pulses. International Journal of Impact Engineering, 34, 253-263.
[17] Shi, B.J., Wang, S., Shu, D.W., Luo, J., Meng, H., Ng, Q.Y. and Zambri, R. (2006) Excitation Pulse Shape Effects in Drop Test Simulation of the Actuator Arm of a Hard Disk Drive. Microsystem Technologies, 12, 299-305.
https://doi.org/10.1007/s00542-005-0063-1
[18] Zeng, Q.H. and Bogy, D.B. (2002) Numerical Simulation of Shock Response of Disk-Suspension-Slider Air Bearing Systems in Hard Disk Drives. Microsystem Technologies, 8, 289-296.
https://doi.org/10.1007/s00542-002-0186-6