用于电网谐波溯源的谐波功率快速检测方法
Fast Detecting Method of Grid Harmonic Power for the Tracing of Harmonic Sources
DOI: 10.12677/SG.2017.74032, PDF, HTML, XML, 下载: 1,744  浏览: 4,376 
作者: 王 凯*, 吴立忞:广西电网责任有限公司钦州供电局,广西 钦州;同向前, 强 健:西安理工大学自动化与信息工程学院,陕西 西安
关键词: 瞬时功率理论电能质量谐波监测谐波溯源谐波功率Instantaneous Power Theory Power Quality Harmonic Monitoring Harmonic Source Tracing Harmonic Power
摘要: 电力用户的谐波功率检测是配电网谐波溯源和谐波污染评价的基础。本文从电力用户与电网公共连接点的电压和电流取样入手,分析了谐波功率的定义及其检测计算方法,提出一种基于瞬时功率理论的谐波功率快速检测计算方法。对三相电压和电流在谐波频率下进行d-q坐标变换并提取出d-q轴的直流分量,按照瞬时功率理论可计算得到各次谐波的有功功率和无功功率的幅值及流向,根据功率流向可实现电网谐波溯源。建立了典型应用系统的仿真模型,仿真结果验证了谐波功率快速检测算法的正确可行性。
Abstract: The harmonic power detection in power grid is the basis of harmonic pollution evaluation and harmonic source tracing. With the sampled voltages and currents on the point of common cou-pling of power users with the grid, the definition and the calculation method of harmonic power was analyzed, and a fast calculation method of harmonic power based on instantaneous power theory was proposed. The d-q coordinate transformation of the three-phase voltages and currents under harmonic frequency was carried out first, and the DC component of the d-q axis was extracted with a low-pass filter, then the amplitude and flow direction of active power and reactive power for each harmonic used for tracing the harmonic source can be calculated according to the instantaneous power theory. A simulation model of a typical application system is established for harmonic power detection, and the simulation results verify the correctness of the harmonic power fast detection algorithm.
文章引用:王凯, 同向前, 强健, 吴立忞. 用于电网谐波溯源的谐波功率快速检测方法[J]. 智能电网, 2017, 7(4): 286-293. https://doi.org/10.12677/SG.2017.74032

参考文献

[1] 陈必荣. 电力系统谐波危害及其治理措施的分析[J]. 电气时代, 2016(8): 52-55.
[2] Shojaie, M. and Mokhtari, H. (2014) A Method for Determination of Harmonics Responsibilities at the Point of Common Coupling Using Data Correlation Analysis. IET Generation Transmission & Distribution, 8, 142-150.
https://doi.org/10.1049/iet-gtd.2013.0111
[3] 张志军. F43电力质量分析仪在谐波故障检测中的应用[J]. 电工电气, 2003(4): 37-38.
[4] 任家爱, 熊皓, 莫景贤. 一种基于fft法的电力谐波分析仪[P]. 中国专利, 202256496. 2012.
[5] Wilkosz, K. (2012) Single-Point Measurement Localization of Prevailing Harmonic Sources in a Power System. IEEE International Conference on Environment and Electrical Engineering, Venice, 18-25 May 2012, 1-6.
https://doi.org/10.1109/EEEIC.2012.6221387
[6] Budeanu, C. (1927) Puissancesrèactives at Fictives. Institut National Roumain pour L’Étude de L’Aménagement et de l’utilisation des sourcesd’Énergie.
[7] Fryze, S. (1931) Active, Reactive and Apparent Power in Circuits with Non-Sinusoidal Voltage and Current. Przegl. Elekrrorech, 32, 7-8.
[8] 同向前, 余健明, 薛钧义. 电网谐波电能损耗的计量方法[J]. 西安理工大学学报, 2002, 18(2): 181-184.
[9] Hamzah, N., Mohamed, A. and Hussain, A. (2003) Methods for Determining Utility and Customer Harmonic Contributions at the Point of Common Coupling. National Power Engineering Conference Proceedings, Bangi, 15-16 December 2003, 167-171.
https://doi.org/10.1109/PECON.2003.1437438
[10] Akagi, H., Kanazawa, Y. and Nabae, A. (2008) Instantaneous Reactive Power Compensators Comprising Switching Devices without Energy Storage Components. IEEE Transactions on Industry Applications, 20, 625-630.
[11] 李圣清, 朱英浩, 周有庆, 等. 基于瞬时无功功率理论的四相输电谐波电流检测方法[J]. 中国电机工程学报, 2004, 24(3): 12-17.
[12] 刘继权, 张茂松. 基于瞬时无功功率理论的新型谐波检测法[J]. 电测与仪表, 2012, 49(10): 29-32.
[13] 辛业春, 李国庆, 王尧,等. 基于双dq坐标变换的三相电压锁相环的研究[J]. 电力系统保护与控制, 2014(10): 114-118.