磁场中磁性颗粒运动机理的研究进展及应用领域
Research Progress and Application Field of Magnetic Particle Motion Mechanism in Magnetic Field
DOI: 10.12677/ME.2017.54017, PDF, HTML, XML,  被引量 下载: 2,169  浏览: 5,791  国家自然科学基金支持
作者: 孙 欣*, 章礼斌, 孙浩楷, 黄文萱, 库建刚:福州大学紫金矿业学院,福建 福州
关键词: 磁性颗粒旋转磁场机理应用Magnetic Particles Rotating Magnetic Field Mechanism Application
摘要: 本文从磁学理论、DLVO理论、地磁作用和等效表面电流原理、磁偶极子理论等方面综述了磁性颗粒在磁场中的运动机理的研究进展,评述了这些进展的科学性与局限性。这些研究进展主要包括在不同理论下磁场中磁性颗粒之间相互作用力的计算、被磁化的磁性颗粒间磁能的计算。重点围绕目前的热点问题,包括利用磁性物质减少药物副作用、驱动微型机器人、制作磁研磨介质、解决磁团聚问题等研究进行了介绍和讨论,旨在对近年来该领域的进展及获得的成果做一个概述和归纳,期望对将来的深入研究提供有一定借鉴。
Abstract: In this paper, the progress of the motion mechanism of magnetic particles in magnetic field is re-viewed by the aspects of magnetism, DLVO, equivalent surface current principle and magnetic dipole theory. The scientificity and limitations of these progresses are reviewed. The progress of these studies mainly includes the calculation of the interaction between the magnetic particles in the magnetic field under different theories, and the calculation of the magnetic energy between the magnetized magnetic particles. Focusing on the current hot issues, the use of magnetic substances to reduce drug side effects, drive microrobot, make magnetic grinding media, solve the problem of magnetic reunification was introduced and discussed. This article provides an overview and induction of the progress and achievements of the field in recent years, hoping to provide certain reference for future in-depth research.
文章引用:孙欣, 章礼斌, 孙浩楷, 黄文萱, 库建刚. 磁场中磁性颗粒运动机理的研究进展及应用领域[J]. 矿山工程, 2017, 5(4): 114-122. https://doi.org/10.12677/ME.2017.54017

参考文献

[1] 赵凯华, 陈熙谋. 电磁学[M]. 北京: 高等教育出版社, 1978.
[2] Eyssa, Y.M. and Boom, R.W. (1976) Magnetic and Coagulation Forces on a Suspension of Magnetic Particles. International Journal of Mineral Processing, 3, 1-8.
https://doi.org/10.1016/0301-7516(76)90010-7
[3] Svoboda, J. (1981) A Theoretical Approach to the Magnetic Flocculation of Weakly Magnetic Minerals. International Journal of Mineral Processing, 8, 377-390.
https://doi.org/10.1016/0301-7516(81)90023-5
[4] Parker, M.R., Kleef, R.P.A.R.V., Myron, H.W., et al. (1982) Particle Aggregation in Colloids in High Magnetic Fields. Journal of Magnetism & Magnetic Materials, 27, 250-256.
https://doi.org/10.1016/0304-8853(82)90085-3
[5] 徐群. 包头铁矿选择性脱泥工艺中磁力团聚机理的研究[D]: [硕士学位论文]. 北京: 北京矿冶研究总院, 1984.
[6] 库建刚, 张文彬, 刘殿文. 强磁性矿粒磁链形成机理分析[J]. 金属矿山, 2007(6): 30-33.
[7] Mishima, F., Nakagawa, K., Chuzawa, M., et al. (2013) Precise Control of the Drug Kinetics by Non-Invasive Magnetic Drug Delivery System. Physica C Superconductivity & Its Applications, 484, 120-124.
https://doi.org/10.1016/j.physc.2012.03.070
[8] Chuzawa, M., Mishima, F., Akiyama, Y., et al. (2011) Drug Accumulation by Means of Noninvasive Magnetic Drug Delivery System. Physica C Superconductivity & Its Applications, 471, 1538-1542.
https://doi.org/10.1016/j.physc.2011.05.233
[9] Hu, K., Sun, J., Guo, Z., et al. (2015) A Novel Magnetic Hydrogel with Aligned Magnetic Colloidal Assemblies Showing Controllable Enhancement of Magnetothermal Effect in the Presence of Alternating Magnetic Field. Advanced Materials, 27, 2507-2514.
https://doi.org/10.1002/adma.201405757
[10] Yu, C., Muroski, M.E., Petit, D.C.M.C., et al. (2016) Rotating Magnetic Field İnduced Oscillation of Magnetic Particles for in Vivo, Mechanical Destruction of Malignant Glioma. Journal of Controlled Release, 223, 75-84.
https://doi.org/10.1016/j.jconrel.2015.12.028
[11] Jang, G.B., Jeon, S., Nam, J., et al. (2015) A Spiral Microrobot Performing Navigating Linear and Drilling Motions by Magnetic Gradient and Rotating Uniform Magnetic Field for Applications in Unclogging Blocked Human Blood Vessels. IEEE Transactions on Magnetics, 51, 1-4.
https://doi.org/10.1109/TMAG.2015.2436913
[12] Fu, Q., Guo, S., Yamauchi, Y., et al. (2015) A Novel Hybrid Microrobot using Rotational Magnetic Field for Medical Applications. Biomedical Microdevices, 17, 1-12.
https://doi.org/10.1007/s10544-015-9942-0
[13] Peyer, K.E., Tottori, S., Qiu, F., et al. (2013) Magnetic Helical Micromachines. Chemistry, 19, 28-38.
https://doi.org/10.1002/chem.201203364
[14] Kwak, J.S. (2009) Enhanced Magnetic Abrasive Polishing of Non-Ferrous Metals Utilizing a Permanent Magnet. International Journal of Machine Tools & Manufacture, 49, 613-618.
[15] Singh, D.K., Jain, V.K. and Raghuram, V. (2005) On the Performance Analysıs of Flexıble Magnetıc Abrasıve Brush. Machining Science & Technology, 9, 601-619.
https://doi.org/10.1080/10910340500398217
[16] Lee, Y.H., Wu, K.L., Bai, C.T., et al. (2015) Planetary Motion Combined with Two-Dimensional Vibration-Assisted Magnetic Abrasive Finishing. International Journal of Advanced Manufacturing Technology, 76, 1865-1877.
https://doi.org/10.1007/s00170-014-6370-x
[17] 邓超, 韩冰, 陈燕. 磁研磨法对钛合金弯管内表面的抛光研究[J]. 航空制造技术, 2015(3): 61-63.
[18] Wang, Y. and Hu, D. (2005) Study on the İnner Surface Finishing of Tubing by Magnetic Abrasive Finishing. International Journal of Machine Tools & Manufacture, 45, 43-49.
[19] Wang, Z.C., Lu, Z.X., Chen, S.F., et al. (2012) Experimental Investigation of Polishing Character of Rotating Magnetic Polishing Fluids. Applied Mechanics & Materials, 201-202, 1096-1101.
https://doi.org/10.4028/www.scientific.net/AMM.201-202.1096
[20] 库建刚, 陈辉煌, 何逵, 等. 强磁性矿粒在磁选过程中的受力分析及动力学模拟[J]. 中南大学学报(自然科学版), 2015(5): 1577-1582.