大约瑟夫逊结量子比特中拉比振荡的几何相位
Geometric Phase of Rabi Oscillations in a Large Josephson-Junction Qubit
DOI: 10.12677/CMP.2017.64011, PDF, HTML, XML, 下载: 1,544  浏览: 3,684  科研立项经费支持
作者: 乔元新, 于肇贤:北京信息科技大学理学院,北京
关键词: Lewis-Riesenfeld不变量理论几何相位拉比振荡大约瑟夫逊结量子比特Lewis-Riesenfeld Invariant Theory Geometric Phase Rabi Oscillations Large Josephson-Junction Qubit
摘要: 通过使用Lewis-Riesenfeld不变量理论,我们研究了大约瑟夫逊结量子比特中拉比振荡的几何相位。发现几何相位与偏置电流的直流和微波脉冲无关,也与微波的转换频率无关。
Abstract: By using the Lewis–Riesenfeld invariant theory, we have studied the geometric phase of Rabi oscillations in a large Josephson-junction qubit. The geometric phase has nothing to do with the dc and microwave pulses of bias current, and is independent of the transitions frequencies of microwaves.
文章引用:乔元新, 于肇贤. 大约瑟夫逊结量子比特中拉比振荡的几何相位[J]. 凝聚态物理学进展, 2017, 6(4): 81-85. https://doi.org/10.12677/CMP.2017.64011

参考文献

[1] Berry, M.V. (1984) Quantal Phase Factors Accompanying Adibatic Changes. Proceedings of the Royal Society of London, 392, 45-57.
https://doi.org/10.1098/rspa.1984.0023
[2] Aharonov, Y. and Bohm, D. (1959) Significance of Electromagnetic Poten-tials in the Quantum Theory. Physics Review, 115, 485-491.
https://doi.org/10.1103/PhysRev.115.485
[3] Aharonov, Y. and Anandan, J. (1987) Phase Change during a Cyclic Quantum Evolution. Physical Review Letters, 58, 1593.
https://doi.org/10.1103/PhysRevLett.58.1593
[4] Samuel, J. and Bhandari, R. (1988) General Setting for Berry’s Phase. Physi-cal Review Letters, 60, 2339.
https://doi.org/10.1103/PhysRevLett.60.2339
[5] Yu, Z.X. and Zhang, D.X. (1995) Phase Factor for Quantum Systems with Time-Bound Conditions. Journal of Qingdao University, 849.
[6] Pati, A.K. (1995) Geometric Aspects of Noncyclic Quantum Evo-lution. Physical Review A, 52, 2576-2584.
https://doi.org/10.1103/PhysRevA.52.2576
[7] Uhlmann, A. (1986) Parallel Transport and Quantum Holonomy along Density Operators. Reports on Mathematical Physics, 24, 229-240.
https://doi.org/10.1016/0034-4877(86)90055-8
[8] Sj’oqvist, E., et al. (2000) Geometric Phases for Mixed States in Interferometry. Physical Review Letters, 85, 2845- 2849.
https://doi.org/10.1103/PhysRevLett.85.2845
[9] Gao, X.C., Xu, J.B. and Qian, T.Z. (1991) Geometric Phase and the General-ized Invariant Formulation. Physical Review A, 44, 7016.
https://doi.org/10.1103/PhysRevA.44.7016
[10] Yu, G., Yu, Z.X. and Zhang, D.X. (1996) Berry Phase of the Finite Deep Column Potential Well with Motive Boundary. Yantai Teachers University Journal, 12, 117.
[11] Gao, X.C., et al. (1996) Quantum-Invariant Theory and the Evolution of a Quantum Scalar Field in Robertson-Walker Flat Spacetimes. Physical Review D, 53, 4374.
https://doi.org/10.1103/PhysRevD.53.4374
[12] Hou, Y.Z., Yu, Z.X. and Liu, Y.H. (1994) Using Quantum-Positive Transformations to Cause the Scalability of Topological Items to Obtain the Perturbation of Per-turbation on the Contribution of B-e: Ry Phase Factors. Journal of Xinyan Teachers College, 7, 37.
[13] Liang, J.Q. and Ding, X.X. (1991) Broken Gauge Equivalence of Hamiltonians Due to Time-Evolution and the Berry Phase. Physics Letters A, 153, 273.
[14] Sun, C.P. and Ge, M.L. (1990) Generalizing Born-Oppenheimer Approximations and Observable Effects of an Induced Gauge Field. Phys-ical Review D, 41, 1349.
https://doi.org/10.1103/PhysRevD.41.1349
[15] Sun, C.P. (1993) Quantum Dynamical Model for Wave-Function Reduction in Classical and Macroscopic Limits. Physical Review A, 48, 898.
[16] Sun, C.P. (1988) Analytic Treatment of High-Order Adiabatic Approximations of 2-Neutrino Oscillations in Matter. Physical Review D, 38, 2908.
https://doi.org/10.1103/PhysRevD.38.2908
[17] Sun, C.P., et al. (1988) High-Order Quantum Adiabatic Approximation and Berrys Phase Factor. Journal of Physics A, 21, 1595.
https://doi.org/10.1088/0305-4470/21/7/023
[18] Chen, G., Li, J. and Liang, J.-Q. (2006) Critical Property of the Geometric Phase in the Dicke Model. Physical Review A, 74, 150.
https://doi.org/10.1103/PhysRevA.74.054101
[19] Fan, H.Y. and Ruan, T.N. (1984) Some New Applications of Coherent States. China Science, 42, 27.
[20] Tsui, et al. (1982) Two-Dimensional Magnetotransport in the Extreme Quantum Limit. Physical Review Letters, 48, 1559.
https://doi.org/10.1103/PhysRevLett.48.1559
[21] Semenoff, et al. (1986) Non-Abelian Adiabatic Phases and the Fractional Quantum Hall Effect. Physical Review Letters, 57, 1195.
https://doi.org/10.1103/PhysRevLett.57.1195
[22] Chen, C.M., et al. (1991) Quantum Hall Effect and Bery Phase Factor Physics. Acta Physica Sinica, 40, 345.
[23] Fan, H.Y. and Li, L.S. (1996) Supersymmetric Unitary Operator for Some Generalized Jaynes-Cummings Models. Communications in Theoretical Physics, 25, 105.
[24] Wu, Y. and Yang, X. (1997) Jaynes-Cummings Model for a Trapped Ion in Any Position of a Standing Wave. Physical Review Letters, 78, 3086.
https://doi.org/10.1103/PhysRevLett.78.3086
[25] Wu, Y. (1996) Simple Algebraic Method to Solve a Coupled-Channel Cavity QED Model. Physical Review A, 54, 4534.
https://doi.org/10.1103/PhysRevA.54.4534
[26] Yang, X., Wu, Y. and Li, Y. (1997) Unified and Standardized Procedure to Solve Various Nonlinear Jaynes-Cummings Models. Physical Review A, 55, 4545.
https://doi.org/10.1103/PhysRevA.55.4545
[27] Lewis, H.R. and Riesenfeld, W.B. (1969) An Exact Quantum The-ory of the Time-Dependent Harmonic Oscillator and of a Charged Particle in a Time-Dependent Electromagnetic Field. Journal of Mathematical Physics, 10, 1458.
https://doi.org/10.1063/1.1664991
[28] Yu, Z.X. and Liu, Y.H. (1991) Aharonov-Bohm Effect of Inducing Gauge Field and Gometric Phase Factors of Suter Experiment. Journal of Yantai Teachers University, 10, 42.
[29] Wilczek, F., et al. (1984) Appear-ance of Gauge Structure in Simple Dynamical Systems. Physical Review Letters, 52, 2111.
https://doi.org/10.1103/PhysRevLett.52.2111
[30] Moody, J., et al. (1986) Realizations of Magnetic-Monopole Gauge Fields: Diatoms and Spin Precession. Physical Review Letters, 56, 893.
https://doi.org/10.1103/PhysRevLett.56.893
[31] Shapere, A. and Wilczek, F. (1989) Geometric Phases in Physics. World Scientific, Singapore.
[32] Martinis, J.M., Nam, S. and Aumentado, J. (2002) Rabi Oscillations in a Large Josephson-Junction Qubit. Physical Review Letters, 89, Article ID: 117901.
https://doi.org/10.1103/PhysRevLett.89.117901
[33] Wei, J. and Norman, E. (1963) Lie Algebraic Solution of Linear Differential Equations. Journal of Mathematical Physics, 4, 575.
https://doi.org/10.1063/1.1703993