升温速率对Au纳米线熔断特性和熔断时间的影响
Influence of Heating Rate on the Fusing Characteristics and Fusing Time of Au Nanowire
DOI: 10.12677/MP.2017.75022, PDF, HTML, XML, 下载: 1,629  浏览: 2,781  国家自然科学基金支持
作者: 胡雪晨, 高廷红*, 张 弦, 李贻丹, 任 蕾, 李凯文:贵州大学新型光电子材料与技术研究所,大数据与信息工程学院,贵州 贵阳
关键词: 熔断特性熔断时间分子动力学模拟Au纳米线Fusing Characteristics Fusing Time Molecular Dynamics Simulation Au Nanowire
摘要: 由于熔断器在高精密仪器设备中的重要地位,其研制设计已成为研究重点。Au纳米线作为现今备受关注的高精度熔断器材料之一,传统的试制研究将会浪费大量财力和人力,采用分子动力学模拟方法,从微观结构层次研究熔断器熔断特性的影响因素具有重要意义。本文基于分子动力学模拟方法,模拟研究不同升温速率对Au纳米线熔断特性和熔断时间的影响。结果表明:Au纳米线在一定范围内升温速率越大,熔断时间越短,熔断温度越高。不同升温速率对熔断位置没有明显影响,但对熔断过程中缩颈长短有显著影响。升温速率较低时,缩颈部分较长,使得熔断后的断面呈链状,升温速率较高时,缩颈部分较短,使得熔断后的断面呈锥形。该模拟方法可以有效地跟踪熔断过程中结构的变化情况,进而指导不同应用场景的Au纳米线高精度熔断器的研制和设计。
Abstract: Because of the important position of fuses in high precision instruments and equipments, the development and design of fuses have become the focus of research. As Au nanowire is one of the prevalent high precision fuse materials, the traditional trial manufacture will waste a lot of money and manpower. Therefore, it is important to study the influence factors of fuses’ fusing characteristics from the micro structure level by using molecular dynamics simulation method. In this paper, the effects of different heating rates on the fusing characteristics and the fusing times of Au nanowires were simulated based on molecular dynamics simulations method. The results show that the higher the heating rate of Au nanowires within a certain range, the shorter the fusing time and the higher the fusing temperature. The different heating rates have no obvious influence on the fusing positions, but have remarkable influence on the neck down length during the fusing process. When the heating rates are low, the necking parts are longer, so that the fused cross sections are in chain shapes. When the heating rates are high, the necking parts are shorter, which make the fused cross sections taper. The simulation method can effectively track the structural changes in the fusing process, and then guide the development and design of Au nanowire high-precision fuses for different application fields.
文章引用:胡雪晨, 高廷红, 张弦, 李贻丹, 任蕾, 李凯文. 升温速率对Au纳米线熔断特性和熔断时间的影响[J]. 现代物理, 2017, 7(5): 190-196. https://doi.org/10.12677/MP.2017.75022

参考文献

[1] 邱文文. 熔断电阻器瞬态特性仿真分析及其性能的研究[D]: [博士学位论文]. 成都: 电子科技大学, 2013.
[2] 石永杰. 熔断电阻器的熔断特性[J]. 电子元件与材料, 1994, 13(3): 22-26.
[3] 张霞, 曹喻霖, 滕坚, 秦好泉. 熔断电阻器生产过程中的质量控制[J]. 电子质量, 2016(3): 39-43.
[4] 柯利•施罗德. 熔断电阻器技术带来符合成本效益的解决方案[J]. 今日电子, 2017(Z1): 68-69.
[5] 张方. 片式陶瓷熔断器用硼硅酸盐/氧化铝基板材料的研究[D]: [博士学位论文]. 西安: 西安理工大学, 2008.
[6] Brahma, S.M. and Girgis, A.A. (2002) Microprocessor-Based Reclosing to Coordinate Fuse and Recloser in a System with High Penetration of Distributed Generation. IEEE Power Engineering Society Winter Meeting, 1, 453-458.
https://doi.org/10.1109/PESW.2002.985041
[7] Siegmund, O.H.W., Gummin, M., Gaines, G., Naletto, G., Stock, J., Raffanti, R., Hull, J., Abiad, R., Rodrigyez-Bull, T., Magoncelli, T., Jelinsky, P., Donakowski, W. and Kromer, K. (1997) Performance of the Double Delay Line Microchannel Plate Detectors for the Far Ultraviolet Spectroscopic Explorer. Proceedings of SPIE, 3114, 283-294.
https://doi.org/10.1117/12.283775
[8] 郭强, 胡玉存, 胡中祥, 程贤进, 程瑜. 一种熔体表面带有防氧化涂层的熔断器[P]. 中国专利, 2012104050570. 2014-04-16.
[9] 李仲才, 章应, 徐永红, 周晓荣. 贯穿复合银/铜熔体材料的工艺与性能研究[J]. 电工材料, 2013(4): 36-38.
[10] 孔繁虹, 王季梅. 高分断能力低压熔断器中的弧后电流研究[J]. 电器与能效管理技术, 1998(6): 9-11.
[11] 吴蔚, 郑士泉. 熔断器交流分断能力试验[J]. 电工电气, 2004, 2: 40-45.
[12] 高攀. 应变加载下Si及其它半导体纳米线电学性能变化的原位研究[D]: [博士学位论文]. 北京: 北京工业大学, 2015.
[13] 吴英远. 氧化锌/碳复合材料的电沉积制备与储锂电化学性能[D]: [博士学位论文]. 广州: 华南理工大学, 2014.
[14] 乔正阳, 刘非拉, 肖鹏, 乔雷, 杨艳南, 房红琳, 张云怀. 一维贵金属纳米材料的控制合成与应用[J]. 化工进展, 2012, 31(10): 2252-2259.
[15] 张慧, 芦志伟, 侯军伟, 吕小毅, 莫家庆. 贵金属纳米线的模板法制备及应用研究进展[J]. 材料导报, 2016, 30(9): 49-56.
[16] Jaconi, M.E. (2011) Nanomedicine: Gold Nanowires to Mend a Heart. Nature Nanotechnology, 6, 692-693.
https://doi.org/10.1038/nnano.2011.195
[17] Kawase, Y., Miyatake, T. and Ito, S. (2000) Heat Analysis of a Fuse for Semiconductor Devices Protection Using 3-D Finite Element Method. IEEE Transactions on Magnetics, 36, 1377-1380.
https://doi.org/10.1109/20.877695
[18] Kao, Y.T., Zhang, Y., Wang, J. and Tai, B. (2017) Bending Behaviors of 3D-Printed Bi-Material Structure: Experimental Study and Finite Element Analysis. Additive Manufacturing, 16, 197-205.
[19] 毛柳明, 文远芳, 周挺. 高压限流熔断器熔断过程及过电压研究[J]. 高电压技术, 2008, 34(4): 820-823.
[20] Foiles, S.M., Baskes, M.I. and Daw, M.S. (1986) Embedded-Atom-Method Functions for the fcc Metals Cu, Ag, Au, Ni, Pd, Pt, and Their Alloys. Physical Review B, 33, 7983-7991.
https://doi.org/10.1103/PhysRevB.33.7983
[21] 曾庆明, 周耐根, 周浪. 金纳米线热稳定性的分子动力学模拟研究[J]. 中国陶瓷, 2008, 44(7): 23-26.
[22] 曾湘波, 廖显伯, 王博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳明, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼[J]. 物理学报, 2004, 53(12): 4410-4413.