玻璃酒杯声波激振的原理及其影响因素的探讨
Discussion on Principle and Influence Factors of the Acoustic Excitation of the Wine Glasses
DOI: 10.12677/APP.2017.79035, PDF, HTML, XML, 下载: 1,018  浏览: 2,016  科研立项经费支持
作者: 闫家舜, 赵 娜, 赵晓凤*, 张钰鑫, 于超宇:成都理工大学物理系,四川 成都;劳永安:成都理工大学生物工程系,四川 成都
关键词: 臂力棒模型多极振动模式五个影响因素French能量模型Arm Force Rod Model Vibrational Modes of Higher Order Five Main Factors French Energy Model
摘要: 本文采用臂力棒模型解释了声波激振的微观机理,并讨论了高阶的振动模式。通过五组实验,探讨液面的高度、液体的密度、黏度、温度和酒杯的尺寸五个主要因素对共振频率的制约作用,结果表明,液面高度、液体的密度与酒杯的共振频率呈负相关,其结果与理论模型较好地吻合;同时发现液体的黏度、温度与酒杯的共振频率呈负相关,且不同尺寸的酒杯对液面高度、液体温度的敏感度不同。
Abstract: In this paper, the arm force rod model is built to illustrate the microscopic mechanism of acoustic excitation and the vibrational modes of higher order are discussed ulteriorly. Five main factors, the height of the liquid level, liquid density, viscosity, temperature and the size of the wine glasses, are analyzed through experiments. The result shows the relationship between liquid levels or its density and frequency of wine glasses are negatively correlated and their value verifies the theoretical model well. Except that, the result also shows liquid viscosity and temperature are negatively correlated with the frequency, and the sensitivity of different size of wine glass to the liquid level and temperature is different.
文章引用:闫家舜, 赵娜, 赵晓凤, 张钰鑫, 于超宇, 劳永安. 玻璃酒杯声波激振的原理及其影响因素的探讨[J]. 应用物理, 2017, 7(9): 283-292. https://doi.org/10.12677/APP.2017.79035

参考文献

[1] 龚思楚, 李森, 张宪政, 等. 某型飞机进气道结构声疲劳分析技术研究[J]. 教练机, 2016(2): 29-32.
[2] 刘寻. 浅谈飞机结构抗声振疲劳设计[J]. 军民两用技术与产品, 2015(8).
[3] 林左鸣, 李克安, 杨胜群. 声波激振的微观机理探讨[J]. 南京航空航天大学学报, 2010, 42(6): 675-679.
[4] 钟力强, 钟飞, 马庆增, 等. 声纹识别与支柱瓷绝缘子的振动声学检测[J]. 广东电力, 2013, 26(12): 97-10.
[5] 金龙, 朱振池, 刘千令, 等. 基于激振声学的物体内部缺陷检测装置[J]. 电子技术应用, 2015, 41(2): 45-47.
[6] Rossing, T.D. (1991) Acoustics of the Glass Harmonica. Journal of the Acoustical Society of America, 95, 1106-1111.
https://doi.org/10.1121/1.408458
[7] Courtois, M., Guirao, B. and Fort, E. (2008) Tuning the Pitch of a Wine Glass by Playing with the Liquid Inside. European Journal of Physics, 29, 303-312.
https://doi.org/10.1088/0143-0807/29/2/011
[8] Jundt, G., Radu, A., Fort, E., et al. (2006) Vibrational Modes of Partly Filled Wine Glasses. Journal of the Acoustical Society of America, 40, 3793-3798.
https://doi.org/10.1121/1.2198183
[9] Joubert, E.L. (2008) The Singing Wineglass: An Exercise in Mathematical Modelling. International Journal of Mathematical Education in Science & Technology, 39, 725-739.
https://doi.org/10.1080/00207390801996469
[10] Uchida, K. and Kishi, K. (2007) Vibrational Analysis of Glass Harp and Its Tone Control. Acoustical Science & Technology, 28, 424-430.
https://doi.org/10.1250/ast.28.424
[11] Problems of IYPT[EB/OL].
http://archive.iypt.org/problems/
[12] 林左鸣, 杨胜群, 李克安. 声波激振破坏的机理及条件研究[J]. 航空精密制造技术, 2014, 50(4): 1-8.
[13] French, A.P. (1983) In Vino Veritas: A study of Wineglass Acoustics. American Journal of Physics, 51, 688-694.
https://doi.org/10.1119/1.13147
[14] Skeldon, K.D., Nadeau, V.J. and Adams, C. (1998) The Resonant Excitation of a Wineglass Using Positive Feedback with Optical Sensing. American Journal of Physics, 66, 851-860.
https://doi.org/10.1119/1.19031