漆酶生物转化酚类化合物的研究进展
The Research Progress on Laccase Biotransformation Phenolic Compound
DOI: 10.12677/AMB.2017.63011, PDF, HTML, XML,  被引量 下载: 1,790  浏览: 4,048  国家自然科学基金支持
作者: 李 欣, 姚世庭, 党 宁, 芦光新*:青海大学农牧学院,青海 西宁
关键词: 漆酶生物转化酚类化合物Laccase Biotransformation Phenolic Compounds
摘要: 漆酶作为一种绿色环保的多酚氧化酶类,对有机芳香化合物(尤其酚类)及衍生物均具有良好的降解效果,在生物质利用、工业废水的处理、污染环境的生物修复以及在食品和动物营养等领域应用方面具有优势和潜力。本文就自然界酚类化合物的来源及去除方法进行简单总结,旨在为进一步合理利用酚类化合物奠定基础。
Abstract: As a kind of green environmental protection of polyphenol oxidase, laccase has good degradation effects on organic aromatic, especially phenolic compounds, and derivatives. It also has advantages and potential in the industrial wastewater treatment, bioremediation of polluted environment, biomass utilization, and other areas of application. In this paper, the nature source of phenolic compounds and removing method were simply summarized to lay the foundation for further reasonable use of phenolic compound.
文章引用:李欣, 姚世庭, 党宁, 芦光新. 漆酶生物转化酚类化合物的研究进展[J]. 微生物前沿, 2017, 6(3): 79-89. https://doi.org/10.12677/AMB.2017.63011

参考文献

[1] Song, L.J., Di, Y. and Shi, B. (2000) The Significance and Development Trend in Research of Plant Polyphenols. Progress in Chemistry, 12, 161-170.
[2] 郑巧英. 酚类物质在土壤中的生物降解[J]. 农业环境保护, 1995, 12(2): 82-84, 90.
[3] Puma, G.L. and Yue, P.L. (l999) Photocatalytic Oxidation of Chlorophenols in Single-Component and Multicomponent Systems. Industrial & Engineering Chemistry Research, 38, 3238-3245.
[4] Wang, F., Liu, Y., Wang, Y., et al. (2012) Laccase and Its Applications. Chinese Journal of Bioprocess Engineering, 10, 70-75.
[5] Haslam, E. (1989) Plant Polyphenols-Vegetable Tannins Revisited. Cambridge University Press, Cambridge, 170.
[6] 林樱姬, 赵萍, 王雅. 植物多酚的提取方法和生物活性研究进展[J]. 陕西农业科学, 2009, 55(6): 105-107.
[7] Hernes, P.J., Benner, R., Cowie, G.L., et al. (2001) Tannin Diagensis in Mangrove Leaves from a Tropical Estuary: A Novel Molecular Approach. Geochimica et Cosmochimica Acta, 65, 3109-3122.
https://doi.org/10.1016/S0016-7037(01)00641-X
[8] Weichselbaum, E. and Buttriss, J.L. (2010) Polyphenols in the Diet. Nutrition Bulletin, 35, 157-164.
https://doi.org/10.1111/j.1467-3010.2010.01821.x
[9] Yang, Y., Yang, R.L., Zou, Y.X., et al. (2014) Recent Ad-vances in Biotransformation of Natural Polyphenols by Gut Microflora. Food Science, 35, 319-325.
[10] Bi, L.W., Wu, Z.S., Chen, J.H., et al. (1997) Study on Preparation of Pharmaceutical Tannic Acid by Solvent-Ex Traction. Chemistry and Industry of Forest Products, 17, 41-45.
[11] Wang, X.F. and Zhang, H. (2012) Research Advances of Polyphenols Physiology Function. Food Research and Development, 33, 211-214.
[12] 狄莹, 石碧. 植物单宁化学研究进展[J]. 化学通报, 1999(3): 1-5.
[13] Pang, D.R., Liu, F., Liao, S.T., et al. (2013) Research Progress and Application of Plant Polyphenols Compounds. Guangdong Agricultural Sciences, 4, 91-94.
[14] Huber, M.M., Canonica, S., Park, G.Y., et al. (2003) Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science & Technology, 37, 1016-1024.
[15] Shindo, H. and Huang, P.M. (1982) Role of Mn(IV) Oxide in Abiotic Formation of Humic Substances in the Environment. Nature, 298, 363-365.
https://doi.org/10.1038/298363a0
[16] Stone, A.T. and Morgan, J.J. (1984) Reduction and Dissolution of Manganese(III) and Manganese(IV) Oxides by Organics.1.Reaction with Hydroquinone. Environmental Science & Technology, 18, 450-456.
https://doi.org/10.1021/es00124a011
[17] Li, C., Li, X.Z., Graham, N., et al. (2008) The Aqueous Degradation of Bisphenol A and Steroid Estrogens by Ferrate. Water Research, 42, 109-120.
https://doi.org/10.1016/j.watres.2007.07.023
[18] Lee, J., Kim, J. and Choi, W. (2007) Oxidation on Zerovalent Iron Promoted by Polyoxometalate as an Electron Shuttle. Environmental Science & Technology, 41, 3335-3340.
https://doi.org/10.1021/es062430g
[19] Kang, S.H. and Choi, W. (2009) Oxidative Degradation of Organic Compounds Using Zero-Valent Iron in the Presence of Natural Organic Matter Serving as an Electron Shuttle. Environmental Science & Technology, 43, 878-883.
https://doi.org/10.1021/es801705f
[20] Bollag, J.M. (1992) Enzymes Catalyzing Oxidative Coupling Reactions of Pollutants. Metal Ions in Biological Systems, 28, 205-217.
[21] Duran, N. and Esposito, E. (2000) Potential Applications of Oxidative Enzymes and Phenoloxidase-Like Compounds in Wastewater and Soil Treatment: A Review. Applied Catalysis B: Environment, 28, 83-99.
https://doi.org/10.1016/S0926-3373(00)00168-5
[22] Huang, Q.G., Selig, H. and Weber, W.J. (2002) Perox-idase-Catalyzed Oxidative Coupling of Phenols in the Presence of Geosorbents: Rates of Non-Extractable Product Formation. Environmental Science & Technology, 36, 596-602.
https://doi.org/10.1021/es010512t
[23] Lawrence, Y. and Jian, Y. (1997) Ligninase-Catalysed Decolorization of Synthetic Dyes. Water Research, 31, 1187-1193.
https://doi.org/10.1016/S0043-1354(96)00380-6
[24] Yoshi, H. (1883) Chemistry of Lacquer. Journal of the Chemical Society, 43, 472-486.
[25] Bao, W.O., Malley, D.M., Whetten, R., et al. (1993) A Laccase Associated with Lignification in Loblolly Pine Xylem. Science, 260, 672-674.
https://doi.org/10.1126/science.260.5108.672
[26] Bertrand, G. (1896) Preparation biochimique du sorbose. Comptes Rendus Hebdomadaires Des Seances De l'Academie Des Sciences, 122, 900-903.
[27] Lundell, T.K., Mäkelä, M.R. and Hildén, K. (2010) Lignin-Modifying Enzymes in Filamentous Basidiomycetes-Ecological, Functional and Phylogenetic Review. Journal of Basic Microbiology, 50, 5-20.
https://doi.org/10.1002/jobm.200900338
[28] Langfelder, K., Streibel, M., Jahn, B., et al. (2003) Biosynthesis of Fungal Melanins and Their Importance for Human Pathogenic Fungi. Fungal Genetics and Biology, 38, 143-158.
https://doi.org/10.1016/S1087-1845(02)00526-1
[29] Burke, R.M. and Cairney, J.W.G. (2002) Laccases and Other Polyphenol Oxidases in Ecto- and Ericoid Mycorrhizal Fungi. Mycorrhiza, 12, 105-116.
https://doi.org/10.1007/s00572-002-0162-0
[30] Lu, L., Zhao, M., Zhang, B.B., et al. (2007) Purification and Characterization of Laccase from Pycnoporus sanguineus and Decolorization of an Anthraquinone Dye by the Enzyme. Applied Microbiology and Biotechnology, 74, 1232-1239.
https://doi.org/10.1007/s00253-006-0767-x
[31] Baldrian, P. (2006) Fungal Laccases-Occurrence and Properties. FEMS Microbiology Reviews, 30, 215-242.
https://doi.org/10.1111/j.1574-4976.2005.00010.x
[32] Smith, M., Shnyreva, A., Wood, D.A., et al. (1998) Tandem Organization and Highly Disparate Expression of the Two Laccase Genes lcc1 and lcc2 in the Cultivated Mushroom Agaricus bisporus. Microbiology, 144, 1063-1069.
https://doi.org/10.1099/00221287-144-4-1063
[33] 芦光新, 王军邦, 陈秀蓉, 等. 东祁连山高寒草地土壤产漆酶真菌的筛选、鉴定及产酶条件的初步研究[J]. 草业学报, 2014, 23(2): 243-252.
[34] Giardina, P., Faraco, V., Pezzella, C., et al. (2010) Laccases: A Never-Ending Story. Cellular and Molecular Life Sciences, 67, 369-385.
https://doi.org/10.1007/s00018-009-0169-1
[35] Hakulinen, N., Kiiskinen, L.L., Kruus, K., et al. (2002) Crystal Structure of a Laccase from Melanocarpus albomyces with an Intact Trinuclear Copper Site. Nature Structural Biology, 9, 601-605.
https://doi.org/10.1038/nsb823
[36] Solomon, E.I., Sundaram, U.M. and Machonkin, T.E. (1996) Multicopper Oxidases and Oxygenades. Chemical Reviews, 96, 2563-2605.
https://doi.org/10.1021/cr950046o
[37] Thurston, C.F. (1994) The Structure and Function of Fungal Laccases. Microbiology, 140, 19-26.
https://doi.org/10.1099/13500872-140-1-19
[38] Wong, D.W.S. (2008) Structure and Action Mechanism of Lignolytic Enzymes. Applied Biochemistry and Biotechnology, 157, 174.
https://doi.org/10.1007/s12010-008-8279-z
[39] Kersten, P.J., Kalyanaraman, B., Hammel, K.E., et al. (1990) Comparison of Lignin Peroxidase, Horseradish Peroxidase and Laccase in Theoxidation of Methoxybenzenes. Biochemistry Journal, 268, 475-480.
https://doi.org/10.1042/bj2680475
[40] Ten Have, R. and Teunissen, P.J.M. (2001) Oxidative Mechanisms Involved in Lignin Degradation by White-Rot Fungi. Chemical Reviews, 101, 3397-3414.
https://doi.org/10.1021/cr000115l
[41] Crestini, C. and Argyropoulos, D.S. (1998) The Early Oxidative Biodegradation Steps of Residual Kraft Lignin Models with Laccase. Bioorganic & Medicinal Chemistry, 6, 2161-2169.
https://doi.org/10.1016/S0968-0896(98)00173-4
[42] Fabbrini, M., Galli, C. and Gentili, P. (2002) Comparing the Catalytic Efficiency of Some Mediators of Laccase. Journal of Molecular Catalysis B: Enzymatic, 16, 231-240.
https://doi.org/10.1016/S1381-1177(01)00067-4
[43] Fabbrini, M., Galli, C., Gentili, P., et al. (2001) An Oxidation of Alcohols by Oxygen with the Enzyme Laccase and Mediation by TEMPO. Tetrahedron Letters, 42, 7551-7553.
https://doi.org/10.1016/S0040-4039(01)01463-0
[44] Chadwick, R.J. (1995) Enhanced Enzyme Removal of Chlo-ro-Phenols in the Prense Cosubstrares. Water Research, 29, 2720-2724.
https://doi.org/10.1016/0043-1354(95)00101-P
[45] Bollag, J.M., Shulleworh, K.L. and Anderson, D.H. (1998) Laccase Mediated Detoxification of Phenolic Compounds. Applied and Environmental Microbiology, 54, 3086-3091.
[46] Bajpai, P. (1999) Application of Enzymes in the Pulp and Paper Industry. Biotechnology Progress, 15, 147-157.
https://doi.org/10.1021/bp990013k
[47] Leonowicz, A., Cho, N.S., Luterek, J., et al. (2001) Fungal Laccase: Properties and Activity on Lignin. Journal of Basic Microbiology, 41, 185-227.
https://doi.org/10.1002/1521-4028(200107)41:3/4<185::AID-JOBM185>3.0.CO;2-T
[48] Kang, K.H., Dec, J., Park, H., et al. (2002) Transformation of the Fungicide Cyprodinil by a Laccase of Trametes villosa in Presence of Phenolic Mediators and Humic Acid. Water Research, 36, 4907-4915.
https://doi.org/10.1016/S0043-1354(02)00198-7
[49] Cantarella, G., Galli, C. and Gentili, P. (2003) Free Radical versus Electron-Transfer Routes of Oxidation of Hydrocarbons by Laccase/Mediator Systems: Catalytic or Stoichiometric Procedures. Journal of Molecular Catalysis B: Enzymatic, 22, 135-144.
https://doi.org/10.1016/S0043-1354(02)00198-7
[50] 韩君莉, 郭丽琼, 林俊芳. 漆酶结构的研究进展[J]. 生物加工过程, 2006, 4(4): 1-6.
[51] Frasconi, M., Favero, G., Boer, H., et al. (2010) Kinetic and Biochemical Properties of High and Low Redox Potential Laccases from Fungal and Plant Origin. Biochimica et Biophysica Acta, 18, 899-908.
https://doi.org/10.1016/j.bbapap.2009.12.018
[52] Sidhu, S.S., Huang, Q., Carrow, R.N., et al. (2012) Use of Fungal Laccases to Facilitate Biodethatching: A New Approach. HortScience, 47, 1536-1542.
[53] Lyndl, R., Paul, J.W., Vanzyl, W.H., et al. (2002) Micribial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews, 66, 506-577.
https://doi.org/10.1128/MMBR.66.3.506-577.2002
[54] Hou, P.B., Li, Y.Z., Wu, B.Z., et al. (2006) Cellulolytic Complex Exists in Cellulolytic Myxobacrerium Sorangium. Enzyme and Microbial Technology, 38, 273-278.
https://doi.org/10.1016/j.enzmictec.2004.08.044
[55] Hankin, L. and Anagnostakis, S.L. (1977) Solid Medium Containing Carboxymethyl Cellulose to Detect CX Cellulase Activity of Microorganisms. Journal of General Microbiology, 98, 109-105.
https://doi.org/10.1099/00221287-98-1-109
[56] Wei, H., Xu, Q., Larry, E., et al. (2009) Natural Paradigms of Plant Cell Wall Degradation. Current Opinion in Biotechnology, 20, 330-338.
https://doi.org/10.1016/j.copbio.2009.05.008
[57] Savitha, S.D., Gururaj, B.T., Nityanand, C., et al. (2011) Isolation of Laccase Producing Fungi and Partial Characterization of Laccase. Biotechnology and Bioengineering, 1, 543-549
[58] Berg, B. and McClaugherty, C. (2003) Plant Litter, Decomposition, Humus Formation, Carbon Sequestration. Springer, Berlin, 300.
[59] Allison, S.D., LeBauer, D.S., Rosario, O.M., et al. (2009) Low Levels of Nitrogen Addition Stimulate Decomposition by Boreal Forest Fungi. Soil Biology & Biochemistry, 41, 293-302.
https://doi.org/10.1016/j.soilbio.2008.10.032
[60] Martínez, Á.T., Speranza, M., Ruiz Dueñas, F.J., et al. (2005) Biodegradation of Lignocellulosics: Microbial, Chemical and Enzymatic Aspects of the Fungal Attack of Lignin. International Microbiology, 8, 195-204.
[61] Steffen, K.T., Cajthaml, T., Šnajdr, J., et al. (2007) Differential Degradation of Oak (Quercus petraea) Leaf Litter by Litter Decomposing Basidiomyctes. Research in Microbiology, 158, 477-455.
https://doi.org/10.1016/j.resmic.2007.04.002
[62] Ricotta, A., Unz, R.F., Bollag, J.M., et al. (1996) Role of a Laccase in the Degration of Pentachlorophenol. Bulletin of Environmental Contamination and Toxicology, 57, 560-567.
https://doi.org/10.1007/s001289900227
[63] Majcherczyk, A., Johannes, C. and Huttermann, A. (1998) Oxidation of Polycyclic Aromatic Hydrocarbons (PAH) by Laccase of Trametes versicolor. Enzyme and Microbial Technology, 22, 335-341.
https://doi.org/10.1016/S0141-0229(97)00199-3
[64] 缪静, 姜竹茂. 漆酶的最新研究进展[J]. 烟台师范学院学报(自然科学版), 2001, 17(2): 146-150.
[65] Elithabeth, R., Michael, A.P. and Rafael, V.D. (1999) Industial Dye Decolorization by Laccases from Ligninolytic Fungi. Current Microbiology, 38, 27-32.
https://doi.org/10.1007/PL00006767
[66] 王晓锋, 张磊. 有机污染土壤的微生物修复研究进展[J]. 中国农学通报, 2013, 29(2): 125-132.
[67] Klibanov, A.M., Tu, T.M. and Scott, K.P. (1983) Peroxidase-Catalyzed Removal of Phenols from Coal-Conversion Waste Waters. Science, 221, 259-261.
https://doi.org/10.1126/science.221.4607.259-a
[68] Yu, J., Taylor, K.E., Zou, H.X., et al. (1994) Phenol Conversion and Dimeric Intermediates in Horseradish Peroxidase-Catalyzed Phenol Removal from Water. Environmental Science & Technology, 28, 2154-2160.
https://doi.org/10.1021/es00061a025
[69] Chhabra, M., Mishra, S. and Sreekrishnan, T.R. (2008) Mediator-Assisted Decolorization and Detoxification of Textile Dyes/Dye Mixture by Cyathus bulleri Laccase. Applied Biochemistry and Biotechnology, 151, 587-598.
https://doi.org/10.1007/s12010-008-8234-z
[70] Jadhav, U.U., Dawkar, V.V., Ghodake, G.S., et al. (2008) Biodegradation of Direct Red 5B, A Textile Dye by Newly isolated Comamonas sp UVS. Journal of Hazardous Materials, 158, 507-516.
https://doi.org/10.1016/j.jhazmat.2008.01.099
[71] Oudia, A., Queiroz, J. and Simões, R. (2008) Potential and Limitation of Trametes versicolor Laccase on Biodegradation of Eucalyptus globulus and Pinus pinaster Kraft Pulp. Enzyme and Microbial Technology, 43, 144-148.
https://doi.org/10.1016/j.enzmictec.2007.11.016
[72] Virk, A.P., Sharma, P. and Capalash, N. (2012) Use of Laccase in Pulp and Paper Industry. Biotechnology Progress Biotechnology, 28, 21-32.
https://doi.org/10.1002/btpr.727
[73] Coelho, J.S., Souza, C.G.M., Oliveira, A.L., et al. (2010a) Comparative Removal of Bentazon by Ganoderma lucidum in Liquid and Solid State Cultures. Current Microbiology, 60, 350-355.
https://doi.org/10.1007/s00284-009-9548-y
[74] Coelho, J.S., Oliveira, A.L., Souza, C.G.M., et al. (2010b) Effect of the Herbicides Bentazon and Diuron on the Production of Ligninolytic Enzymes by Ganoderma lucidum. International Biodeterioration and Biodegradation, 64, 156-161.
https://doi.org/10.1016/j.ibiod.2009.12.006
[75] Parawira, W. and Tekere, M. (2011) Biotechnological Strategies to Overcome Inhibitors in Lignocellulose Hydrolysates for Ethanol Production: Review. Critical Reviews in Biotechnology, 31, 20-31.
https://doi.org/10.3109/07388551003757816
[76] Waterman, P.G. and Mole, S. (1994) Analysis of Phenolic Plant Metabolites. Blackwell Scientific Publications, Oxford.
[77] Schultz, J.C. (1989) Tannin-Insect Interactions. Chemistry and Significance of Condensed Tannins. Plenum Press, New York, 417-433.
https://doi.org/10.1007/978-1-4684-7511-1_26
[78] Van Hoven, W. (1984) Tannins and Digestibility in Greater Kudu. Canadian Journal of Plant Science, 64, 177-198.
https://doi.org/10.4141/cjas84-212
[79] Hagerman, A.E. and Butler, L.G. (1989) Choosing Appropriate Methods and Standards for Assaying Tannins. Chemical Ecology, 15, 1795-1810.
https://doi.org/10.1007/BF01012267
[80] Butler, L.G., Riedle, D.L., Lebryk, D.G., et al. (1984) Interaction of Proteins with Sorghum Tannin: Mechanism, Specificity and Significance. Journal of the American Oil Chemists Society, 61, 916-920.
https://doi.org/10.1007/BF02542166
[81] Reddy, N.R., Pierson, M.D., Sathe, S.K., et al. (1985) Dry Bean Tannins: A Review of Nutritional Implications. Journal of the American Oil Chemists Society, 62, 541-549.
https://doi.org/10.1007/BF02542329
[82] Van-Soest, P.J. and Mcdowell, R.E. (1987) Predicting the Digestibility of Tropic Al Browse. Journal of Animal Science, 65, 339.
[83] Harborne, J.B. (1984) Phenolic Compounds. In: Phytochemical Methods, Springer, Netherlands, 37-99.
[84] Northrup, R.R. and Vogt, K.A. (1995) Polyphenol Control of Nitrogen Release from Pine Litter. Nature, 377, 227-229.
https://doi.org/10.1038/377227a0
[85] Appel, H.M. (1993) Phenolics in Ecological Interactions: The Importance of Oxidation. Chemical Ecology, 19, 1521-1552.
https://doi.org/10.1007/BF00984895
[86] Baldrian, P. (2009) Ectomycorrhizal Fungi and Their Enzymes in Soils: Is There Enough Evidence for Their Role as Facultative Soil Saprotrophs? Oecologia, 161, 657-660.
https://doi.org/10.1007/s00442-009-1433-7
[87] Takashima, S., Iikura, H., Nakamura, A., et al. (1998) Over Production of Recombinant Trichoderma reesei Cellulases by Aspergillus oryzae and Their Enzymatic Properties. Biotechnology Letter, 65, 163-171.
[88] Lee, J. (1997) Biological Conversion of Lignocellulosic Biomass to Ethanol. Journal of Biotechnology, 56, 1-24.
https://doi.org/10.1016/S0168-1656(97)00073-4
[89] Boominathan, K. and Reedy, C.A. (1992) Fungal Degradation of Lignin. In: Arora, D.S., Elander, R.P., Mukerji, K.G., et al., Eds., Handbook of Applied Mycology, Vol. 4, Marcel Dekker, New York, 763-782.
[90] Sugiura, M., Hirai, H. and Nishida, T. (2003) Purification and Characterization of a Novel Lignin Peroxidase from White-Rot Fungus Phanerochaete sordida YK-6241. FEMs Microbiology Letters, 224, 285-290.
https://doi.org/10.1016/S0378-1097(03)00447-6
[91] 郝杰杰, 宋福强, 田兴军, 等. 几株半知菌对马尾松落叶的分解——木质纤维素酶的活性动力学[J]. 林业科学, 2006, 42(11): 69-75.
[92] 芦光新, 陈秀蓉, 杨成德, 等. 一株纤维素分解菌的鉴定及对两种草坪草凋落物分解活性的研究[J]. 草业学报, 2011a, 20(6): 170-179.
[93] 芦光新, 陈秀蓉, 杨成德, 等. 真菌分泌纤维素酶与2种草坪草凋落物有机质降解相互关系的研究[J]. 草地学报, 2011b, 19(6): 954-959.
[94] Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., et al. (2008) Stoichiometry of Soil Enzyme Activity at Global Scale. Reviews and Synthesis. Ecological Letters, 11, 1252-1264.
[95] Prescott, C.E. (2005) Do Rates of Litter Decomposition Tell Us Anything We Really Need to Know? Forest Ecology and Management, 220, 66-74.
https://doi.org/10.1016/j.foreco.2005.08.005
[96] Leckie, S.E. (2005) Methods of Microbial Community Profiling and Their Application to Forest Soil. Forest Ecology and Management, 220, 88-106.
https://doi.org/10.1016/j.foreco.2005.08.007
[97] Zak, D.R., Blackwood, C.B. and Waldrop, M.P. (2006) A Molecular Dawn for Biogeochemistry. Trends in Ecology & Evolution, 21, 288-295.
https://doi.org/10.1016/j.tree.2006.04.003
[98] Gartner, T.B. and Cardon, Z.G. (2004) Decomposition Dynamics in Mixed-Species Leaf Litter. Oikos, 104, 230-246.
https://doi.org/10.1111/j.0030-1299.2004.12738.x
[99] Di Nardo, C., Cinquegrana, A., Papa, S., et al. (2004) Laccase and Peroxidase Isoenzymes during Leaf Litter Decomposition of Quercus ilex in a Mediterranean Ecosystem. Soil Biology & Biochemistry, 36, 1539-1544.
https://doi.org/10.1016/j.soilbio.2004.07.013
[100] Fioretto, A., Papa, S., Curcio, E., et al. (2000) Enyzme Dynamics on Decomposition of Cistus incanus and Myrtus communis in a Mediterranean Ecosystem. Soil Biology & Biochemistry, 32, 1847-1855.
https://doi.org/10.1016/S0038-0717(00)00158-9
[101] Berg, B. and Meentemayer, V. (2002) Litter Quality in a North European Transect versus Carbon Storage Potential. Plant Soil, 242, 83-92.
https://doi.org/10.1023/A:1019637807021
[102] Gallo, M., Amonette, R., Lauber, C., et al. (2004) Microbial Community Structure and Oxidative Enzyme Activity in Nitrogen-Amended North Temperate Forest Soils. Microbial Ecology, 48, 218-229.
https://doi.org/10.1007/s00248-003-9001-x
[103] Sinsabaugh, R.L., Gallo, M.E., Lauber, C., et al. (2005) Extracellular Enzyme Activities and Soil Organic Matter Dynamics for Northern Hardwood Forests Receiving Simulated Nitrogen Deposition. Biogeochemistry, 75, 201-215.
https://doi.org/10.1007/s10533-004-7112-1
[104] Lindahl, B.D., Ihrmark, K., Boberg, J., et al. (2007) Spatial Separation of Litter Decomposition and Mycorrhizal Nitrogen Uptake in a Boreal Forest. New Phytologist, 173, 611-620.
https://doi.org/10.1111/j.1469-8137.2006.01936.x
[105] Šnajdr, J., Valáŝková, V., Merhautová, V., et al. (2008) Spatial Variability of Enzyme Activities and Microbial Biomass in the Upper Layer of Quercus petraea Forest Soil. Soil Biology & Biochemistry, 40, 2068-2075.
https://doi.org/10.1016/j.soilbio.2008.01.015
[106] Nannipieri, P., Ascher, J., Ceccherini, M.T., et al. (2003) Microbial Diversity and Soil Functions. European Journal of Soil Science, 54, 655-670.
https://doi.org/10.1046/j.1351-0754.2003.0556.x