成骨分化相关信号通路的研究进展
Research Progress of Osteogenesis-Related Signaling Pathways
DOI: 10.12677/ACM.2017.74039, PDF, HTML, XML, 下载: 2,876  浏览: 6,768  科研立项经费支持
作者: 周 雷, 王明海:复旦大学附属上海市第五人民医院骨科,上海
关键词: 骨代谢成骨分化信号通路Bone Metabolism Osteogenesis Signaling Pathway
摘要: 目的:成骨分化是骨质形成的基础,也是骨代谢的关键步骤。近年来,关于成骨分化的分子机制,国内外取得了许多突破性的进展。故围绕成骨分化相关信号通路研究进展这一要点进行综述和分析。方法:检索近几年国内外成骨分化及成骨相关信号通路研究的文献,并作总结分析。结果:发现多条信号通路参与成骨分化,其中,BMP-SMAD、Wnt/β-Catenin、Notch、Hedgehog、MAPK、FGF信号通路在成骨分化过程中最为关键。多条信号通路间存在着相互作用,构成了一个复杂的调控网络,但由于研究手段的局限,成骨分化相关信号通路的具体作用机制仍不明了。结论:若能说明这些信号通路各自发挥作用的机制及各条通路之间的相互关系,对阐明成骨分化的具体机制具有重要意义。
Abstract: Objective: Osteogenesis is the foundation of bone formation and key procedure of bone metabolism. In recent years, major progress was made in the molecular mechanism of osteogenesis at home and abroad. Therefore, the mechanism and research progress of osteogenesis-related signaling pathways was reviewed. Methods: Literature about ossification and osteogenesis-relate signaling pathways in recent years were reviewed and analyzed. Results: Several signaling pathways have been found osteogenesis-related, among them, BMP-SMAD, Wnt/β-Catenin, Notch, Hedgehog, MAPK and FGF signaling pathways play the leading role in bone-formation. Besides, a complex regulatory network is composed of interactions between multiple signaling pathways. However, the specific mechanism of osteogenesis-related signaling pathways is still unclear because of limited research methods. Conclusion: To make clear the mechanism of these signaling pathways respectively and their interactions is of great significance for illustrating the complete mechanism of osteogenesis.
文章引用:周雷, 王明海. 成骨分化相关信号通路的研究进展[J]. 临床医学进展, 2017, 7(4): 235-241. https://doi.org/10.12677/ACM.2017.74039

参考文献

[1] Oldknow, K.J., MacRae, V.E. and Farquharson, C. (2015) Endocrine Role of Bone: Recent and Emerging Perspectives beyond Osteocalcin. Journal of Endocrinology, 225, R1-R19.
https://doi.org/10.1530/JOE-14-0584
[2] Hankenson, K.D., Gagne, K. and Shaughnessy, M. (2015) Extracellular Signaling Molecules to Promote Fracture Healing and Bone Regeneration. Advanced Drug Delivery Reviews, 94, 3-12.
https://doi.org/10.1016/j.addr.2015.09.008
[3] Peng, Y., Kang, Q., Cheng, H., Li, X., Sun, M.H., Jiang, W., Luu, H.H., Park, J.Y., Haydon, R.C. and He, T.C. (2003) Transcriptional Characterization of Bone Morphogenetic Proteins (BMPs)-Mediated Osteogenic Signaling. Journal of Cellular Biochemistry, 90, 1149-1165.
https://doi.org/10.1002/jcb.10744
[4] Daluiski, A., Engstrand, T., Bahamonde, M.E., Gamer, L.W., Agius, E., Stevenson, S.L., Cox, K., Rosen, V. and Lyons, K.M. (2001) Bone Morphogenetic Protein-3 Is a Negative Regulator of Bone Density. Nature Genetics, 27, 84-88.
https://doi.org/10.1038/83810
[5] Massague, J. (2000) How Cells Read TGF-Beta Signals. Nature Reviews Molecular Cell Biology, 1, 169-178.
https://doi.org/10.1038/35043051
[6] Lee, M.H., Kim, Y.J., Kim, H.J., Park, H.D., Kang, A.R., Kyung, H.M., Sung, J.H., Wozney, J.M., Kim, H.J. and Ryoo, H.M. (2003) BMP-2-Induced Runx2 Expression Is Mediated by Dlx5, and TGF-Beta 1 Opposes the BMP-2-Induced Osteoblast Differentiation by Suppression of Dlx5 Expression. Journal of Biological Chemistry, 278, 34387-34394.
https://doi.org/10.1074/jbc.M211386200
[7] Sapkota, G., Knockaert, M., Alarcón, C., Montalvo, E., Brivanlou, A.H. and Massagué, J. (2006) Dephosphorylation of the Linker Regions of Smad1 and Smad2/3 by Small C-Terminal Domain Phosphatases Has Distinct Outcomes for Bone Morphogenetic Protein and Transforming Growth Factor-Beta Pathways. Journal of Biological Chemistry, 281, 40412-40419.
https://doi.org/10.1074/jbc.M610172200
[8] Sun, X., Xie, Z., Ma, Y., Pan, X., Wang, J., Chen, Z. and Shi, P. (2017) TGF-Beta Inhibits Osteogenesis by Upregulating the Expression of Ubiquitin Ligase SMURF1 via MAPK-ERK Signaling. Journal of Cellular Physiology.
[9] Zhang, Y., Chang, C., Gehling, D.J., Hemmati-Brivanlou, A. and Derynck, R. (2001) Regulation of Smad Degradation and Activity by Smurf2, an E3 Ubiquitin Ligase. Proceedings of the National Academy of Sciences of the USA, 98, 974-979.
https://doi.org/10.1073/pnas.98.3.974
[10] Kopf, J., Petersen, A., Duda, G.N. and Knaus, P. (2012) BMP2 and Mechanical Loading Cooperatively Regulate Immediate Early Signalling Events in the BMP Pathway. BMC Biology, 10, 37.
https://doi.org/10.1186/1741-7007-10-37
[11] Papanicolaou, S.E., Phipps, R.J., Fyhrie, D.P. and Genetos, D.C. (2009) Modulation of Sclerostin Expression by Mechanical Loading and Bone Morphogenetic Proteins in Osteogenic Cells. Biorheology, 46, 389-399.
[12] Santos, A., Bakker, A.D., Willems, H.M., Bravenboer, N., Bronckers, A.L. and Klein-Nulend, J. (2011) Mechanical Loading Stimulates BMP7, But Not BMP2, Production by Osteocytes. Calcified Tissue International, 89, 318-326.
https://doi.org/10.1007/s00223-011-9521-1
[13] Zhou, J., Lee, P.L., Tsai, C.S., Lee, C.I., Yang, T.L., Chuang, H.S., Lin, W.W., Lin, T.E., Lim, S.H., Wei, S.Y., Chen, Y.L., Chien, S. and Chiu, J.J. (2012) Force-Specific Activation of Smad1/5 Regulates Vascular Endothelial Cell Cycle Progression in Response to Disturbed Flow. Proceedings of the National Academy of Sciences USA, 109, 7770-7775.
https://doi.org/10.1073/pnas.1205476109
[14] Baarsma, H.A., Konigshoff, M. and Gosens, R. (2013) The Wnt Signaling Pathway from Ligand Secretion to Gene Transcription: Molecular Mechanisms and Pharmacological Targets. Pharmacology & Therapeutics, 138, 66-83.
https://doi.org/10.1016/j.pharmthera.2013.01.002
[15] Day, T.F., Guo, X., Garrett-Beal, L. and Yang, Y. (2005) Wnt/Beta-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis. Developmental Cell, 8, 739-750.
https://doi.org/10.1016/j.devcel.2005.03.016
[16] Regard, J.B., Cherman, N., Palmer, D., Kuznetsov, S.A., Celi, F.S., Guettier, J.M., Chen, M., Bhattacharyya, N., Wess, J., Coughlin, S.R., Weinstein, L.S., Collins, M.T., Robey, P.G. and Yang, Y. (2011) WNT/Beta-Catenin Signaling Is Differentially Regulated by Galpha Proteins and Contributes to Fibrous Dysplasia. Proceedings of the National Academy of Sciences USA, 108, 20101-20106.
https://doi.org/10.1073/pnas.1114656108
[17] Rodda, S.J. and McMahon, A.P. (2006) Distinct Roles for Hedge-hog and Canonical Wnt Signaling in Specification, Differentiation and Maintenance of Osteoblast Progenitors. Devel-opment, 133, 3231-3244.
https://doi.org/10.1242/dev.02480
[18] Ongaro, A., Pellati, A., Bagheri, L., Rizzo, P., Caliceti, C., Massari, L. and De Mattei, M. (2016) Characterization of Notch Signaling during Osteogenic Differentiation in Human Osteosarcoma Cell Line MG63. Journal of Cellular Physiology, 231, 2652-2663.
https://doi.org/10.1002/jcp.25366
[19] Tezuka, K., Yasuda, M., Watanabe, N., Morimura, N., Kuroda, K., Miyatani, S. and Hozumi, N. (2002) Stimulation of Osteoblastic Cell Differentiation by Notch. Journal of Bone & Mineral Research, 17, 231.
https://doi.org/10.1359/jbmr.2002.17.2.231
[20] Mclarren, K.W., Lo, R., Grbavec, D., Thirunavukkarasu, K., Karsenty, G. and Stifani, S. (2000) The Mammalian Basic Helix Loop Helix Protein HES-1 Binds to and Modulates the Transactivating Function of the Runt-Related Factor Cbfa1. Journal of Biological Chemistry, 275, 530-538.
https://doi.org/10.1074/jbc.275.1.530
[21] Deregowski, V., Gazzerro, E., Priest, L., Rydziel, S. and Canalis, E. (2006) Notch 1 Overexpression Inhibits Osteoblastogenesis by Suppressing Wnt/Beta-Catenin But Not Bone Morpho-genetic Protein Signaling. Journal of Biological Chemistry, 281, 6203-6210.
https://doi.org/10.1074/jbc.M508370200
[22] Engin, F., Yao, Z., Yang, T., Zhou, G., Bertin, T., Jiang, M.M., Chen, Y., Wang, L., Zheng, H. and Sutton, R.E. (2008) Dimorphic Effects of Notch Signaling in Bone Homeostasis. Nature Medicine, 14, 299.
https://doi.org/10.1038/nm1712
[23] Hooper, J.E. (2003) Smoothened Translates Hedgehog Levels into Distinct Responses. Development, 130, 3951-3963.
https://doi.org/10.1242/dev.00594
[24] Ohba, S., Kawaguchi, H., Kugimiya, F., Ogasawara, T., Kawamura, N., Saito, T., Ikeda, T., Fujii, K., Miyajima, T., Kuramochi, A., Miyashita, T., Oda, H., Nakamura, K., Takato, T. and Chung, U.I. (2008) Patched1 Haploinsufficiency Increases Adult Bone Mass and Modulates Gli3 Repressor Activity. Developmental Cell, 14, 689-699.
https://doi.org/10.1016/j.devcel.2008.03.007
[25] Kitaura, Y., Hojo, H., Komiyama, Y., Takato, T., Chung, U.I. and Ohba, S. (2014) Gli1 Haploinsufficiency Leads to Decreased Bone Mass with an Uncoupling of Bone Metabolism in Adult Mice. PLoS One, 9, e109597.
https://doi.org/10.1371/journal.pone.0109597
[26] Tian, Y., Xu, Y., Fu, Q. and Dong, Y. (2012) Osterix Is Re-quired for Sonic Hedgehog-Induced Osteoblastic MC3T3-E1 Cell Differentiation. Cell Biochemistry and Biophysics, 64, 169-176.
https://doi.org/10.1007/s12013-012-9369-7
[27] Amano, K., Densmore, M., Fan, Y. and Lanske, B. (2016) Ihh and PTH1R Signaling in Limb Mesenchyme Is Required for Proper Segmentation and Subsequent Formation and Growth of Digit Bones. Bone, 83, 256-266.
https://doi.org/10.1016/j.bone.2015.11.017
[28] Petrova, R. and Joyner, A.L. (2014) Roles for Hedgehog Signaling in Adult Organ Homeostasis and Repair. Development, 141, 3445-3457.
https://doi.org/10.1242/dev.083691
[29] Zou, S., Chen, T., Wang, Y., Tian, R., Zhang, L., Song, P., Yang, S., Zhu, Y., Guo, X., Huang, Y., Li, Z., Kan, L. and Hu, H. (2014) Mesenchymal Stem Cells Overexpressing Ihh Promote Bone Repair. Journal of Orthopaedic Surgery and Research, 9, 102.
https://doi.org/10.1186/s13018-014-0102-7
[30] Cuadrado, A. and Nebreda, A.R. (2010) Mechanisms and Func-tions of p38 MAPK Signalling. Biochemical Journal, 429, 403-417.
https://doi.org/10.1042/BJ20100323
[31] Zhang, X., Zhou, C., Zha, X., Xu, Z., Li, L., Liu, Y., Xu, L., Cui, L., Xu, D. and Zhu, B. (2015) Apigenin Promotes Osteogenic Differentiation of Human Mesenchymal Stem Cells through JNK and p38 MAPK Pathways. Molecular and Cellular Biochemistry, 407, 41-50.
https://doi.org/10.1007/s11010-015-2452-9
[32] Huang, Y.F., Lin, J.J., Lin, C.H., Su, Y. and Hung, S.C. (2012) c-Jun N-Terminal Kinase 1 Negatively Regulates Osteoblastic Differentiation Induced by BMP2 via Phosphorylation of Runx2 at Ser104. Journal of Bone and Mineral Research, 27, 1093-1105.
https://doi.org/10.1002/jbmr.1548
[33] Matsushita, T., Chan, Y.Y., Kawanami, A., Balmes, G., Landreth, G.E. and Murakami, S. (2009) Extracellular Signal-Regulated Kinase 1 (ERK1) and ERK2 Play Essential Roles in Osteoblast Differentiation and in Supporting Osteoclastogenesis. Molecular and Cellular Biochemistry, 29, 5843-5857.
https://doi.org/10.1128/MCB.01549-08
[34] Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G. and Franceschi, R.T. (2000) MAPK Pathways Activate and Phosphorylate the Osteoblast-Specific Transcription Factor, Cbfa1. The Journal of Biological Chemistry, 275, 4453-4459.
https://doi.org/10.1074/jbc.275.6.4453
[35] Ge, C., Xiao, G., Jiang, D., Yang, Q., Hatch, N.E., Roca, H. and Franceschi, R.T. (2009) Identification and Functional Characterization of ERK/MAPK Phosphorylation Sites in the Runx2 Transcription Factor. The Journal of Biological Chemistry, 284, 32533-32543.
https://doi.org/10.1074/jbc.M109.040980
[36] Noth, U., Tuli, R., Seghatoleslami, R., Howard, M., Shah, A., Hall, D.J., Hickok, N.J. and Tuan, R.S. (2003) Activation of p38 and Smads Mediates BMP-2 Effects on Human Trabecular Bone-Derived Osteoblasts. Experimental Cell Research, 291, 201-211.
https://doi.org/10.1016/S0014-4827(03)00386-0
[37] Caverzasio, J. and Manen, D. (2007) Essential Role of Wnt3a-Mediated Activation of Mitogen-Activated Protein Kinase p38 for the Stimulation of Alkaline Phosphatase Ac-tivity and Matrix Mineralization in C3H10T1/2 Mesenchymal Cells. Endocrinology, 148, 5323-5330.
https://doi.org/10.1210/en.2007-0520
[38] Bianchi, E.N. and Ferrari, S.L. (2009) Beta-Arrestin2 Regulates Para-thyroid Hormone Effects on a p38 MAPK and NFkappaB Gene Expression Network in Osteoblasts. Bone, 45, 716-725.
https://doi.org/10.1016/j.bone.2009.06.020
[39] Beenken, A. and Mohammadi, M. (2009) The FGF Family: Bi-ology, Pathophysiology and Therapy. Nature Reviews Drug Discovery, 8, 235-253.
https://doi.org/10.1038/nrd2792
[40] Montero, A., Okada, Y., Tomita, M., Ito, M., Tsurukami, H., Nakamura, T., Doetschman, T., Coffin, J.D. and Hurley, M.M. (2000) Disruption of the Fibroblast Growth Factor-2 Gene Results in Decreased Bone Mass and Bone Formation. The Journal of Clinical Investigation, 105, 1085-1093.
https://doi.org/10.1172/JCI8641
[41] Sabbieti, M.G., Agas, D., Xiao, L., Marchetti, L., Coffin, J.D., Doetschman, T. and Hurley, M.M. (2009) Endogenous FGF-2 Is Critically Important in PTH Anabolic Effects on Bone. Journal of Cellular Physiology, 219, 143-151.
https://doi.org/10.1002/jcp.21661
[42] Ohbayashi, N., Shibayama, M., Kurotaki, Y., Imanishi, M., Fujimori, T., Itoh, N. and Takada, S. (2002) FGF18 Is Required for Normal Cell Proliferation and Differentiation during Osteogenesis and Chondrogenesis. Genes & Development, 16, 870-879.
https://doi.org/10.1101/gad.965702
[43] Marie, P.J., Coffin, J.D. and Hurley, M.M. (2005) FGF and FGFR Signaling in Chondrodysplasias and Craniosynostosis. Journal of Cellular Biochemistry, 96, 888-896.
https://doi.org/10.1002/jcb.20582
[44] Teplyuk, N.M., Haupt, L.M., Ling, L., Dombrowski, C., Mun, F.K., Nathan, S.S., Lian, J.B., Stein, J.L., Stein, G.S., Cool, S.M. and van Wijnen, A.J. (2009) The Osteogenic Transcription Factor Runx2 Regulates Components of the Fibroblast Growth Factor/Proteoglycan Signaling Axis in Osteoblasts. Journal of Cellular Biochemistry, 107, 144-154.
https://doi.org/10.1002/jcb.22108
[45] Basu-Roy, U., Ambrosetti, D., Favaro, R., Nicolis, S.K., Mansukhani, A. and Basilico, C. (2010) The Transcription Factor Sox2 Is Required for Osteoblast Self-Renewal. Cell Death & Differ-entiation, 17, 1345-1353.
https://doi.org/10.1038/cdd.2010.57