磁共振扩散张量成像在外周神经系统疾病中应用的研究进展
Application of Magnetic Resonance Diffusion Tensor Imaging in Peripheral Nervous System Diseases
DOI: 10.12677/ACM.2017.74040, PDF, HTML, XML,  被引量 下载: 1,664  浏览: 2,257 
作者: 朱安妮:南昌大学医学院,江西 南昌;伍伟飞:三峡大学人民医院骨科,湖北 宜昌
关键词: DTI周围神经系统神经微观结构应用Diffusion Tensor Imaging Peripheral Nervous System Microstructural Properties of Nerve Application
摘要: 周围神经系统(peripheral nervous system, PNS)由于结构纤细走行复杂,与周围组织结构不宜分辨,难以利用常规影像学检查方法获得满意的图像。因此目前诊断周围神经系统疾病的主要是依靠临床病史、体格检查和电生理检查的数据。核磁共振扩散张量成像(diffusion tensor imaging, DTI)是在弥散加权成像基础进一步上发展而来的影像检查方法,利用水分子运动的各向异性进行成像,从而能精确地显示神经纤维内部的细微结构。通过DTI技术获得的各向异性分数(fractional anisotropy, FA)、表观扩散系数(apparent diffusion coefficient, ADC)等量化数据能够进行定量的评价神经纤维束的病理生理改变及结构形态的特点。DTI经常应用于周围神经系统病变的研究,现就DTI技术在颅神经压迫综合征、腰椎间盘突出症、肿瘤的定位及神经损伤修复等方面进行综述。
Abstract: Peripheral nervous system (PNS) due to the structure of fine walking complex, and the surrounding tissue structure should not be resolved; it is difficult to use conventional imaging methods to obtain a satisfactory image. Therefore, the current diagnosis of PNS diseases is mainly dependent on clinical history, physical examination and electrophysiological examination of the data. Diffusion tensor imaging (DTI) is a method of image developed on the basis of diffusion weighted imaging. It is used to image the anisotropy of water molecule motion, which can accurately show the microfluid structure. The quantitative data of fractional anisotropy (FA) and apparent diffusion coefficient (ADC) obtained by DTI technique can quantitatively evaluate the pathophysiological changes and structural features of nerve fiber bundles. DTI is often used in peripheral neurological disease research, the aim of the article was to review the DTI technology application in cranial nerve compression syndrome, lumbar disc herniation, tumor location and nerve injury repair.
文章引用:朱安妮, 伍伟飞. 磁共振扩散张量成像在外周神经系统疾病中应用的研究进展[J]. 临床医学进展, 2017, 7(4): 242-247. https://doi.org/10.12677/ACM.2017.74040

参考文献

[1] Brayda-Bruno, M., Tibiletti, M., Ito, K., Fairbank, J., Galbusera, F., et al. (2014) Advances in the Diagnosis of Degen-erated Lumbar Discs and Their Possible Clinical Application. European Spine Journal, 23, 315-323.
https://doi.org/10.1007/s00586-013-2960-9
[2] Bohlken, M.M., Mandl, R.C., Brouwer, R.M., van den Heuvel, M.P., Hedman, A.M., et al. (2014) Heritability of Structural Brain Network Topology: A DTI Study of 156 Twins. Human Brain Mapping.
https://doi.org/10.1002/hbm.22550
[3] Li, X.H., Li, J.B., He, X.J., Wang, F., Huang, S.L., et al. (2015) Timing of Diffusion Tensor Imaging in the Acute Spinal Cord Injury of Rats. Scientific Reports, 5, 12639.
https://doi.org/10.1038/srep12639
[4] Rajasekaran, S., Kanna, R.M. and Shetty, A.P. (2012) Diffusion Tensor Imaging of the Spinal Cord and Its Clinical Applications. The Journal of Bone and Joint Surgery. British Volume, 94, 1024-1031.
https://doi.org/10.1302/0301-620X.94B8.29618
[5] Yang, E., Nucifora, P.G. and Melhem, E.R. (2011) Diffusion MR Imaging: Basic Principles. Neuroimaging Clinics of North America, 21, 1-25.
https://doi.org/10.1016/j.nic.2011.02.001
[6] Hilbert, F., Wech, T., Neubauer, H., Veldhoen, S., Bley, T.A., et al. (2017) Comparison of Turbo Spin Echo and Echo Planar Imaging for Intravoxel Incoherent Motion and Diffusion Tensor Imaging of the Kidney at 3Tesla. Zeitschrift für Medizinische Physik, 27, 193-201.
https://doi.org/10.1016/j.zemedi.2016.12.001
[7] Hori, M., Aoki, S., Okubo, T., Ishigame, K., Kumagai, H., et al. (2005) Line-Scan Diffusion Tensor MR Imaging at 0.2 T: Feasibility Study. Journal of Magnetic Resonance Imaging, 22, 794-798.
https://doi.org/10.1002/jmri.20440
[8] Nana, R., Zhao, T. and Hu, X. (2008) Single-Shot Multiecho Parallel Echo-Planar Imaging (EPI) for Diffusion Tensor Imaging (DTI) with Improved Signal-to-Noise Ratio (SNR) and Reduced Distortion. Magnetic Resonance in Medicine, 60, 1512-1517.
https://doi.org/10.1002/mrm.21770
[9] Farquharson, S., Tournier, J.D., Calamante, F., Fabinyi, G., Schneider, G.D., et al. (2013) White Matter Fiber Tractography: Why We Need to Move beyond DTI. Journal of Neurosurgery, 6, 1367-1377.
[10] Fernandez, J.C., Pathak, S., Engh, J., Jarbo, K., Verstynen, T., et al. (2012) High-Definition Fiber Tractography of the Human Brain: Neuroanatomical Validation and Neurosurgical Applications. Neurosurgery, 71, 430-453.
https://doi.org/10.1227/NEU.0b013e3182592faa
[11] Sweet, J.A., Walter, B.L., Gunalan, K., Chaturvedi, A., McIntyre, C.C., et al. (2014) Fiber Tractoography of the Axonal Pathways Linking the Basal Ganglia and Cerebellum in Parkinson Disease: Implications for Targeting in Deep Brain Stimulation. Journal of Neurosurgery, 120, 988-996.
https://doi.org/10.3171/2013.12.JNS131537
[12] Baur, V., Brühl, A.B., Herwig, U., Eberle, T., Rufer, M., et al. (2013) Evidence of Frontotemporal Structural Hypoconnectivity in Social Anxiety Disorder: A Quantitative Fiber Trac-tography Study. Human Brain Mapping, 34, 437-446.
https://doi.org/10.1002/hbm.21447
[13] Brienza, M., Pujia, F., Colaiacomo, M.C., Anastasio, M.G., Pierelli, F., et al. (2014) 3T Diffusion Tensor Imaging and Electroneurography of peripheral Nerve: A Morphofunctional Analysis in Carpal Tunnel Syndrome. Journal of Neuroradiology Journal de Neuroradiologie, 41, 124-130.
https://doi.org/10.1016/j.neurad.2013.06.001
[14] Sakai, T., Miyagi, R., Yamabe, E., Fujinaga, Y., Bhatia N, N., et al. (2014) Diffusion-Weighted Imaging and Diffusion Tensor Imaging of Asymptomatic Lumbar Disc Herniation. The journal of Medical Investigation: JMI, 61, 197-203.
https://doi.org/10.2152/jmi.61.197
[15] Sridharan, A., Bendlin, B.B., Gallagher, C.L., Oh, J.M., Willette, A.A., et al. (2014) Effect of Age and Calorie Restriction on Corpus Callosal Integrity in Rhesus Macaques: A Fibert-Ractography Study. Neuroscience Letters, 21, 38-42.
https://doi.org/10.1016/j.neulet.2014.03.047
[16] Kuhnt, D., Bauer, M.H., Egger, J., Richter, M., Kapur, T., et al. (2013) Fiber Tractography Based on Diffusion Tensor Imaging Compared with High-Angular-Resolution Diffusion Imaging with Compressed Sensing: Initial Experience. Neurosurgery, 73, 165-175.
[17] Miyagi, R., Sakai, T., Yamabe, E. and Yoshioka, H. (2015) Consecutive Assessment of FA and ADC Values of Normal Lumbar Nerve Roots from the Junction of the Dura Mater. BMC Musculoskeletal Disorders, 16, 156.
https://doi.org/10.1186/s12891-015-0576-4
[18] Li, X., Chen, J., Hong, G., Sun, C., Wu, X., et al. (2013) In Vivo DTI Longitudinal Measurements of Acute Sciatic Nerve Traction Injury and the Association with Pathological and Functional Changes. European Journal of Radiology, 82, 707-714.
https://doi.org/10.1016/j.ejrad.2013.07.018
[19] Cristina, G., Zeynep, F., Klara, B. and Florian, I.S. (2014) Meyer’s Loop Anatomy Demonstrated Using Diffusion Tensor MR Imaging and Fiber Tractography at 3T. Acta Medica Marisiensis, 60, 215-222.
[20] Mostofi, K. and Karimi Khouzani, R. (2015) Reliability of the Path of the Sciatic Nerve, Congruence between Patients' History and Medical Imaging Evidence of Disc Herniation and Its Role in Surgical Decision Making. Asian Spine Journal, 9, 200-204.
https://doi.org/10.4184/asj.2015.9.2.200
[21] Balbi, V., Budzik, J.F., Duhamel, A., Bera-Louville, A., Le Thuc, V., et al. (2011) Tractography of Lumbar Nerve Roots: Initial Results. European Radiology, 21, 1153-1159.
https://doi.org/10.1007/s00330-010-2049-3
[22] Eguchi, Y., Ohtori, S., Orita, S., Kamoda, H., Arai, G., et al. (2011) Quantitative Evaluation and Visualization of Lumbar Foraminal Nerve Root Entrapment by Using Diffusion Tensor Imaging: Preliminary Results. American Journal of Neuroradiology, 32, 1824-1829.
https://doi.org/10.3174/ajnr.A2681
[23] Li, J., Wang, Y., Wang, Y., Lv, Y. and Ma, L. (2016) Study on Lumbosacral Nerve Root Compression Using DTI. Biomedical Reports, 5, 353-356.
https://doi.org/10.3892/br.2016.734
[24] Kanamoto, H., Eguchi, Y., Suzuki, M., Oikawa, Y., Yamanaka, H., Tamai, H., Kobayashi, T., Orita, S., Yamauchi, K., Suzuki, M., et al. (2016) The Diagnosis of Double-Crush Lesion in the L5 Lumbar Nerve Using Diffusion Tensor Imaging. Spine Journal, 16, 315-321.
https://doi.org/10.1016/j.spinee.2015.11.003
[25] Dallaudiere, B., Lincot, J., Hess, A., Balbi, V., Cornelis, F., et al. (2014) Clinical Relevance of Diffusion Tensor Imaging Parameters in Lumbar Disco-Radicular Conflict. Diagnostic and Interventional Imaging, 95, 63-68.
https://doi.org/10.1016/j.diii.2013.08.019
[26] Sasiadek, M.J., Szewczyk, P. and Bladowska, J. (2012) Application of Diffusion Tensor Imaging (DTI) in Pathological Changes of the Spinal Cord. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 18, 73-79.
https://doi.org/10.12659/MSM.882891
[27] Goh, S.Y., Irimia, A., Torgerson, C.M., Tubi, M.A., Real, C.R., et al. (2015) Longitudinal Quantification and Visualization of Intracerebral Haemorrhage Using Multimodal Magnetic Res-onance and Diffusion Tensor Imaging. Brain Injury, 29, 438-445.
https://doi.org/10.3109/02699052.2014.989907
[28] Chiang, C.Y., Sheu, M.L., Cheng, F.C., Chen, C.J., Su, H.L., et al. (2014) Comprehensive Analysis of Neurobehavior Associated with Histomorphological Alterations in a Chronic Constrictive Nerve Injury Model through Use of the CatWalk XT System. Journal of Neurosurgery, 120, 250-262.
https://doi.org/10.3171/2013.9.JNS13353
[29] Li, J., Wei, G.H., Huang, H., Lan, Y.P., Liu, B., et al. (2013) Nerve Injury-Related Autoimmunity Activation Leads to Chronic Inflammation and Chronic Neuropathic Pain. Anesthesiology, 118, 416-429.
https://doi.org/10.1097/ALN.0b013e31827d4b82
[30] Reinhold, M., Ederer, C., Henninger, B., et al. (2014) Dif-fusion-Weighted Magnetic Resonance Imaging for the Diagnosis of Patients with Lumbar Nerve Root Entrapment Syndromes: Results from a Pilot Study. European Spine Journal, 24, 319-326.
https://doi.org/10.1007/s00586-014-3602-6
[31] Li, C.T., Wang, Q.Z., Xiao, W.F., et al. (2014) 3.0T MRI Trac-tography of Lumbar Nerve Roots in Disc Herniation. Acta Radiologica, 55, 969-975.
https://doi.org/10.1177/0284185113508179
[32] Takashima, H., Takebayashi, T., Yoshimoto, M., et al. (2013) Efficacy of Diffusion-Weighted Magnetic Resonance Imaging in Diagnosing Spinal Root Disorders in Lumbar Disc Herniation. Spine, 38, 998-1002.
https://doi.org/10.1097/BRS.0b013e31829862d3
[33] 李新春, 陈健宇, 刘庆余, 等. 正常臂丛节后神经MR神经成像术[J]. 中国医学影像技术, 2004, 20(1): 105-107.
[34] Poretti, A., Meoded, A., Rossi, A., Raybaud, C. and Huisman, T.A. (2013) Diffusion Tensor Imaging and Fiber Tractography in Brain Malformations. Pediatric Radiology, 43, 28-54.
https://doi.org/10.1007/s00247-012-2428-9
[35] Byun, W.M., Jang, H.W. and Kim, S.W. (2012) Three-Dimensional Magnetic Resonance Rendering Imaging of Lumbosacral Radiculography in the Diagnosis of Symptomatic Extraforaminal Disc Herniation with or without Foraminal Extension. Spine, 37, 840-844.
https://doi.org/10.1097/BRS.0b013e3182374465
[36] Toro, J., Díaz, C., Reyes, S., Jeanneret, V. and Burbano, L.E. (2014) Superficial Siderosis Related to a Thoracic Disc Herniation with Associated Dural Injury. CNS Neuroscience & Therapeutics, 20, 469-472.
https://doi.org/10.1111/cns.12253