巢湖流域雨涝时空特征分析
Analysis of the Spatial-Temporal Characteristics of Waterlogging in Chaohu Basin
DOI: 10.12677/JWRR.2017.66070, PDF, HTML, XML,  被引量 下载: 1,661  浏览: 2,225 
作者: 范裕祥, 王玉红:安徽省巢湖气象局,安徽 巢湖;叶金印, 王 皓, 杨祖祥:安徽省气象台,安徽 合肥
关键词: 降水量重现期雨涝时空特征变化规律流域Precipitation Return Period Waterlogging Spatiotemporal Characteristics Change Rules River Basin
摘要: 利用巢湖流域7个国家气象站1961~2016年逐日降水量资料,用频率分析、Pearson-III型分布曲线、趋势分析和滑动平均等方法分析了近56a来巢湖流域雨涝的时空分布特征和变化规律。结果表明,(1) 巢湖流域4个子单元的年最大日降水量的月际变化均表现为典型的正态分布;用Pearson-III型分布曲线拟合巢湖流域各子单元年最大日降水量的分布,得出5a、10a、20a、50a等4个重现期下日降雨量,并且呈自南向北减小的特点。(2) 巢湖流域4个子单元均遭受过雨涝,流域雨涝频率从东南向西北减少;季节分布上,夏季是巢湖流域雨涝灾害频率最高、范围最广的季节,秋季多于春季,冬季没有出现过雨涝;各子单元雨涝最集中的季节都是夏季,均达到或超过15%。(3) 巢湖流域雨涝站率气候趋势为0.79/10年,但呈现比较明显的分段年代际演变特征,第一阶段从1960年代中期到1980年代为明显增加趋势,其中1980年代中期达到峰值,第二阶段从1990年代到2010年代为不明显增加趋势。
Abstract: Based on the Daily precipitation data of 7 national weather stations in Chaohu Basin during 1961 to 2000,  the Pearson-III distribution curve, trend analysis and moving average method were used to analyze the temporal and spatial distribution characteristics and change rules of waterlogging. The main results were summarized as follows: (1) Monthly variation of annual maximum daily precipitation in 4 sub units of Chaohu River Basin shows a typical normal distribution. The distribution of annual maximum daily precipitation in each sub unit of Chaohu River Basin is fitted by Pearson-III distribution curve. The daily rainfall of 4 recurrence periods, such as 5a, 10a, 20a, 50a and so on, is calculated, which showed the characteristics of decreasing from south to north. (2) 4 sub-units of Chaohu Basin are subjected to waterlogging, and the frequency of waterlogging decreases from southeast to northwest. As for the seasonal features of distribution, the period when waterlogging disaster occurs with the highest frequency, and the widest range of Chaohu Basin is in summer. In addition, there was no waterlogging disaster happened in winter before, while more disasters occurred in autumn than spring. Summer is the most centralized season of water logging disaster in various subunits, and the rate has reached or exceeded 15%. Summer is the most concentrated season of waterlogging in each sub unit, which had reached or exceeded 15%. (3) The climate trends rate of waterlogging in Chaohu Basin is 0.79/10 years, which shows obvious characteristics of decadal evolution. It shows an obvious increasing trend in the first stage from the middle of 1960s to 1980s, which reaches the peak in the mid-1980s, and the second stage from 1990s to 2010s is not significantly increased.
文章引用:范裕祥, 叶金印, 王玉红, 王皓, 杨祖祥. 巢湖流域雨涝时空特征分析[J]. 水资源研究, 2017, 6(6): 602-609. https://doi.org/10.12677/JWRR.2017.66070

参考文献

[1] 刘彤, 闫天池. 我国的主要气象灾害及其经济损失[J]. 自然灾害学报, 2011, 20(2): 90-95. LIU Tong, YAN Tianchi. Main meteorological disasters in China and their economic losses. Journal of Natural Disasters, 2011, 20(2): 90-95. (in Chinese)
[2] 黄荣辉, 杜振彩. 全球变暖背景下中国旱涝气候灾害的演变特征及趋势[J]. 自然杂志, 2010, 32(4): 187-195. HUANG Ronghui, DU Zhencai. Evolution characteristics and trend of droughts and floods in China under the background of global warming. Chinese Journal of Nature, 2010, 32(4): 187-195. (in Chinese)
[3] 肖潺, 叶殿秀, 陈昊明. 中国大陆雨涝时空特征[J]. 灾害学, 2016, 32(1): 85-89. XIAO Chan, YE Dianxiu and CHEN Haoming. Temporal and spatial characteristics of waterlogging over mainland China. Journal of Catastrophology, 2016, 32(1): 85-89. (in Chinese)
[4] 钟晋阳, 王秀珍, 黄敬峰, 等. 浙江省雨涝时空分布特征研究[J]. 科学通报, 2009, 25(1): 35-39. ZHONG Jinyang, WANG Xiuzhen, HUANG Jingfeng, et al. Study on the spatial and temporal distribution of waterlogging indices in Zhejiang Province. Bulletin of Science and Technology, 2009, 25(1): 35-39. (in Chinese)
[5] 陈峪, 高歌, 任国玉, 等. 中国十大流域近40多年降水量时空变化特征[J]. 自然资源学报, 2005, 20(5): 637-643. CHEN Yu, GAO Ge, REN Guoyu, et al. Spatial and temporal variation of precipitation over ten major basins in China between 1956 and 2000. Journal of Natural Resources, 2005, 20(5): 637-643. (in Chinese)
[6] 任国玉, 战云健, 任玉玉, 等. 中国大陆降水时空变异规律——I. 气候学特征[J]. 水科学进展, 2015, 26(3): 299-310. REN Guoyu, ZHAN Yunjian, REN Yuyu, et al. Spatial and temporal patterns of precipitation variability over Mainland China. Advances in Water Science, 2015, 26(3): 299-310. (in Chinese)
[7] 张勇, 张强, 叶殿秀, 等. 1951~2006年黄河和长江流域雨涝变化分析[J]. 气候变化研究进展, 2009, 5(4): 226-230. ZHANG Yong, ZHANG Qiang, YE Dianxiu, et al. Analysis of rain-waterlogging in the Yellow River and the Yangtze River basins during 1951-2006. Advances in Climate Change Research, 2009, 5(4): 226-230. (in Chinese)
[8] 袁媛, 王心源, 李祥, 等. 巢湖流域旱涝时空特性分析[J]. 灾害学, 2007, 22(2): 97-100. YUAN Yuan, WANG Xinyuan, LI Xiang, et al. Analysis of the spatial-temporal characteristics of flood and drought in Chaohu Basin. Journal of Catastrophology, 2007, 22(2): 97-100. (in Chinese)
[9] 中国气象局. 中国灾害性天气气候图集[M]. 北京: 气象出版社, 2007. China Meteorological Administration. Atlas of China’s disastrous weather and climate. Beijing: Meteorological Press, 2007. (in Chinese)
[10] 杨明, 宫宇, 吴晓娜, 等. 安徽省夏季暴雨时空分布特征的成因分析[J]. 暴雨灾害, 2015, 34(2): 143-152. YANG Ming, GONG Yu, WU Xiaona, et al. The analysis on possible causes of spatial-temporal characteristics of torrential rain in Anhui Province. Torrential Rain and Disasters, 2015, 34(2): 143-152. (in Chinese)
[11] 简裕庚, 李叶新, 林晓亮, 等. 陈广东省年最高水位多年一遇的极值计算[J]. 中山大学学报(自然科学版), 2003, 42(2): 97-101. JIAN Yugeng, LI Yexin, LIN Xiaoliang, et al. Computation of extreme water levels for main rivers in Guangdong Province. Journal of Sun Yat-sen University (NATURAL SCIENCE EDITION), 2003, 42(2): 97-101. (in Chinese)
[12] 林两位, 王莉萍. 用Pearson-III概率分布推算重现期年最大日雨量[J]. 气象科技, 2005, 33(4): 314-317. LIN Liangwei, WANG Liping. Estimation of annual maximum diurnal precipitation for reappearance periods with Pearson-III distribution. Meteorological Science and Technology, 2005, 33(4): 314-317. (in Chinese)
[13] 张玉虎, 王琛茜, 刘凯利, 等. 不同概率分布函数降雨极值的适用性分析[J]. 地理科学, 2015, 35(11): 1460-1466. ZHANG Yuhu, WANG Chenxi, LIU Kaili, et al. Applicability of different probability distributions to estimated extreme rainfall. Scientia Geographica Sinica, 2015, 35(11): 1460-1466. (in Chinese)
[14] 张婷, 魏凤英. 华南地区汛期极端降水的概率分布特征[J]. 气象学报, 2009, 67(3): 442-451. ZHANG Ting, WEI Fengying. Probability distribution of precipitation extremes during raining seasons in South China. Acta Meteorologica Sinica, 2009, 67(3): 442-451. (in Chinese)
[15] 华东水利学院. 水文学的概率统计基础[M]. 北京: 水利出版社, 1981: 213-228. East China Water Conservancy Institute. The basis of probability and statistics of hydrology. Beijing: Water Conservancy Press, 1981: 213-228. (in Chinese)
[16] 陈敦隆. 海洋和科学研究中的概率与数理统计方法[M]. 北京: 海洋出版社, 1984: 151-315. Chen Dunlong. Probability and mathematical statistics in ocean and scientific research. Beijing: Ocean Press, 1984: 151-315. (in Chinese)
[17] 金光炎. 水文统计的原理与方法[M]. 北京: 水利电力出版社, 1958. JIN Guangyan. The principle and method of hydrological statistics. Beijing: Water Conservancy and Electric Power Press, 1958. (in Chinese)
[18] 屠其璞, 王俊德, 丁裕国, 等. 气象应用概率统计学[M]. 北京: 气象出版社, 1984: 196-225. TU Qipu, WANG Junde, DING Yuguo, et al. Probability and statistics of meteorological applications. Beijing: Meteorology Press, 1984: 196-225. (in Chinese)
[19] 刘艳群, 陈创买, 郑勇, 等. 韶关市年和月最大日降水量多年一遇的极值计算[J]. 广东气象, 2008, 30(1): 33-39. LIU Yanqun, CHEN Chuang, ZHENG Yong, et al. The extreme value calculation of the maximum annual precipitation in years and months in Shaoguan. Guangdong Meteorology, 2008, 30 (1): 33-39. (in Chinese)
[20] 姚梦婷, 高超, 陆苗, 等. 1959~2008年淮河流域极端径流的强度和频率特征[J]. 地理研究, 2015, 34(8): 1535-1546. YAO Mengting, GAO Chao, LU Miao, et al. The intensity and frequency characteristics of extreme runoff over the Huaihe River Basin during 1959-2008. Geographical Research, 2015, 34(8): 1535-1546. (in Chinese)