LIBSVM在铅酸蓄电池寿命预测中的应用研究
Application of LIBSVM in Life Prediction of Lead-Acid Battery
DOI: 10.12677/SG.2017.75045, PDF, HTML, XML, 下载: 1,611  浏览: 2,951 
作者: 杨传凯*:国网陕西省电力公司电力科学研究院,陕西 西安;西安电子科技大学微电子学院,陕西 西安;周际城:武汉大学电气工程学院,湖北 武汉;刘 伟, 李 旭:国网陕西省电力公司,陕西 西安;李良书, 付 峰:国网陕西省电力公司渭南供电公司,陕西 渭南;陈 凯:国网电力科学研究院武汉南瑞有限责任公司,湖北 武汉
关键词: LIBSVM铅酸蓄电池寿命预测变电站支持向量机LIBSVM Lead-Acid Battery Life Prediction Substation Support Vector Machine
摘要: 铅酸蓄电池作为变电站直流电源系统的核心设备,随着投运时间的增长,将会发生内阻增大、容量减小问题,从而导致铅酸蓄电池组的使用寿命减小。因此,研究铅酸蓄电池的寿命预测方法,对于保障变电站的安全稳定运行具有重要作用。在介绍支持向量机的基本原理的基础上,结合铅酸蓄电池的样本数据,通过交叉验证选取LIBSVM回归机最优参数,通过支持向量机回归预测模型建立铅酸蓄电池的寿命预测模型。实验结果表明,基于LIBSVM的铅酸蓄电池寿命预测模型具有较高的预测精度,该方法是切实可行的。
Abstract: As the core of the DC power supply system, the performance of the lead-acid battery is the safe and stable operation of the whole substation. With the use of lead-acid battery pack time increases, the battery’s internal resistance will increase, the battery capacity will be reduced, resulting in lead-acid battery life. Therefore, it is of great significance to study the life prediction of lead-acid battery. Based on the basic principle of support vector machine (SVM) and the sample data of lead-acid battery, the optimal parameters of LIBSVM regression machine are selected by cross validation, and the life prediction model of lead-acid battery is established by support vector machine regression model. The experimental results show that the LIBSVM-based lead-acid battery life prediction model has high prediction accuracy, and the method is feasible.
文章引用:杨传凯, 周际城, 刘伟, 李旭, 李良书, 付峰, 陈凯. LIBSVM在铅酸蓄电池寿命预测中的应用研究[J]. 智能电网, 2017, 7(5): 412-419. https://doi.org/10.12677/SG.2017.75045

参考文献

[1] 徐凯. 对110kV变电站直流系统改造方案的探讨[J]. 电力系统保护与控制, 2010(7): 116-118, 123.
[2] 罗伟林, 张立强, 吕超, 王立欣. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013(1): 140-144.
[3] 乔波强, 侯振义, 王佑民. 蓄电池剩余容量预测技术现状及发展[J]. 电源世界, 2012(2): 21-26, 35.
[4] 蔡宗举. 电动汽车用铅酸电池SOC估算策略研究[D]: [硕士学位论文]. 天津: 天津大学, 2009.
[5] Wenzl, H., Baring-Gould, I., Kaiser, R., et al. (2005) Life Prediction of Batteries for Selecting the Technically Most Suitable and Cost Effective Battery. Journal of Power Sources, 144, 373-384.
https://doi.org/10.1016/j.jpowsour.2004.11.045
[6] 谢家雨, 李卫青, 胡焱. 基于PNN的航空铅酸蓄电池容量预测[J]. 测控技术, 2015(2): 115-117.
[7] 薛萍, 宋岩亮. 改进蚁群算法与BP网络融合预测铅酸蓄电池SOC[J]. 哈尔滨理工大学学报, 2016(6): 95-99.
[8] 汲乔瑶. 基于数据驱动的无人艇蓄电池剩余寿命预测[D]: [硕士学位论文]. 大连: 大连海事大学, 2015.
[9] 顾亚祥, 丁世飞. 支持向量机研究进展[J]. 计算机科学, 2011(2): 14-17.
[10] 宋召青, 崔和, 胡云安. 支持向量机理论的研究与进展[J]. 海军航空工程学院学报, 2008(2): 143-148, 152.
[11] Dubarry, M., Svoboda, V., Hwu, R., et al. (2007) Capacity and Power Fading Mechanism Identification from a Commercial Cell Evaluation. Journal of Power Sources, 165, 566-572.
[12] 杨军, 解晶莹, 王久林. 化学电源测试原理与技术[M]. 北京: 化学工业出版社, 2006.
[13] 王文强. 电网用阀控式铅酸蓄电池寿命预测研究与实现[D]: [硕士学位论文]. 长沙: 湖南大学, 2015.
[14] Xing, Y., Williard, N., Tsui, K.L., et al. (2011) A Comparative Review of Prognostics-Based Reliability Methods for Lithium Batteries. Prognostics and System Health Management Conference, 1-6.
[15] Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. Printed in the United Kingdom at the University Press.
https://doi.org/10.1017/CBO9780511801389
[16] Fukushi, D., Shichiri, M., Sugiyama, S., et al. (2003) Scanning Near-Field Optical/Atomic Force Microscopy Detection of Fluorescence in Situ Hybridization Signals beyond the Optical Limit. Experimental Cell Research, 289, 237-244.
[17] Chapelle, O., Vapnik, V., Bousquet, O., et al. (2002) Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46, 131-159.
https://doi.org/10.1023/A:1012450327387
[18] Huang, C.M., Lee, Y.J., Lin, D.K.J., et al. (2007) Model Selection for Support Vector Machines via Uniform Design. Computational Statistics & Data Analysis, 52, 335-346.
[19] 徐凯. 对110kV变电站直流系统改造方案的探讨[J]. 电力系统保护与控制, 2010(7): 116-118, 123.
[20] 罗伟林, 张立强, 吕超, 王立欣. 锂离子电池寿命预测国外研究现状综述[J]. 电源学报, 2013(1): 140-144.
[21] 乔波强, 侯振义, 王佑民. 蓄电池剩余容量预测技术现状及发展[J]. 电源世界, 2012(2): 21-26, 35.
[22] 蔡宗举. 电动汽车用铅酸电池SOC估算策略研究[D]: [硕士学位论文]. 天津: 天津大学, 2009.
[23] Wenzl, H., Baring-Gould, I., Kaiser, R., et al. (2005) Life Prediction of Batteries for Selecting the Technically Most Suitable and Cost Effective Battery. Journal of Power Sources, 144, 373-384.
https://doi.org/10.1016/j.jpowsour.2004.11.045
[24] 谢家雨, 李卫青, 胡焱. 基于PNN的航空铅酸蓄电池容量预测[J]. 测控技术, 2015(2): 115-117.
[25] 薛萍, 宋岩亮. 改进蚁群算法与BP网络融合预测铅酸蓄电池SOC[J]. 哈尔滨理工大学学报, 2016(6): 95-99.
[26] 汲乔瑶. 基于数据驱动的无人艇蓄电池剩余寿命预测[D]: [硕士学位论文]. 大连: 大连海事大学, 2015.
[27] 顾亚祥, 丁世飞. 支持向量机研究进展[J]. 计算机科学, 2011(2): 14-17.
[28] 宋召青, 崔和, 胡云安. 支持向量机理论的研究与进展[J]. 海军航空工程学院学报, 2008(2): 143-148, 152.
[29] Dubarry, M., Svoboda, V., Hwu, R., et al. (2007) Capacity and Power Fading Mechanism Identification from a Commercial Cell Evaluation. Journal of Power Sources, 165, 566-572.
[30] 杨军, 解晶莹, 王久林. 化学电源测试原理与技术[M]. 北京: 化学工业出版社, 2006.
[31] 王文强. 电网用阀控式铅酸蓄电池寿命预测研究与实现[D]: [硕士学位论文]. 长沙: 湖南大学, 2015.
[32] Xing, Y., Williard, N., Tsui, K.L., et al. (2011) A Comparative Review of Prognostics-Based Reliability Methods for Lithium Batteries. Prognostics and System Health Management Conference, 1-6.
[33] Cristianini, N. and Shawe-Taylor, J. (2000) An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods. Printed in the United Kingdom at the University Press.
https://doi.org/10.1017/CBO9780511801389
[34] Fukushi, D., Shichiri, M., Sugiyama, S., et al. (2003) Scanning Near-Field Optical/Atomic Force Microscopy Detection of Fluorescence in Situ Hybridization Signals beyond the Optical Limit. Experimental Cell Research, 289, 237-244.
[35] Chapelle, O., Vapnik, V., Bousquet, O., et al. (2002) Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46, 131-159.
https://doi.org/10.1023/A:1012450327387
[36] Huang, C.M., Lee, Y.J., Lin, D.K.J., et al. (2007) Model Selection for Support Vector Machines via Uniform Design. Computational Statistics & Data Analysis, 52, 335-346.