慢性应激抑郁大鼠模型心脏电生理变化与5-羟色胺、生长相关蛋白-43影响的研究
Serotonin Effect on Change between Cardiac Electrophysiology and Growth-Associated Protein-43 in Unpredictable Chronic Mild Stress of Depression in Mice
DOI: 10.12677/IJPN.2017.64012, PDF, HTML, XML, 下载: 1,618  浏览: 3,952  科研立项经费支持
作者: 刘政疆, 刘 华:广州医科大学附属第六医院/清远市人民医院心内科,广东 清远;曾志恒:广州药科大学附属第一医院心内科,广东 广州
关键词: 抑郁5-羟色胺心律失常心脏电生理学Depression Serotonin Arrhythmias Cardiac Electrophysiology
摘要: 目的:探讨慢性应激抑郁大鼠模型5-羟色胺(5-HT)对心脏局部组织生长相关蛋白-43(GAP-43)及动作电位的影响。方法:随机将20只大鼠分为对照组和抑郁组,对抑郁组大鼠进行连续21天的慢性应激。应用电生理仪纪录心率、心房、心室局部组织动作电位时间(APD),对左心室心尖部行5-HT及GAP-43免疫染色。结果:抑郁组大鼠慢性应激后的糖水消耗试验、自主活动得分均明显低于对照组,差异有显著统计学意义(P < 0.01)。抑郁组大鼠心率高于对照组,差异有统计学意义(P < 0.05)。抑郁组大鼠心房、心室组织动作电位时间低于对照组大鼠,差异有统计学意义(P < 0.05)。抑郁组大鼠心室组织5-羟色胺及GAP-43递质含量高于对照组大鼠,差异有统计学意义(P < 0.01)。结论:慢性应激所致的抑郁导致交感神经平衡紊乱及5-羟色胺及GAP-43递质含量增多,明显缩短大鼠心房、心室动作电位时程,破坏了心室电生理一致性,这可能是抑郁导致心律失常的机制之一。
Abstract: Objective: To explore electrophysiologic characteristics of action potential and serotonin, growth-associated protein-43 (GAP-43) of heart location tissue in chronic stress mice. Methods: Twenty rats were randomly divided into two groups, 10 rats exposed to 21 consecutive days of unpredicted chronic mild stress as depression models, and 10 rats as normal controls. After intraperitioneal injection of choral hydrate (0.3 ml/100 mg), heart rats, atrial and ventricular local tissue field action potential duration (fAPD) were recorded by electrophysiological technology. Immunohistochemical stain, quantitative analysis of 5-HT and GAP-43 in the local heart tissue of depression group and control group were achieved by computerized image system. Results: There was significantly difference in glucose consume, total activity, heart rats between the two groups (p < 0.01, p < 0.05). The atrium and ventricular local tissue APD in depression model group were lower than that in normal group (p < 0.05). the positive index(PI) of 5-HT and GAP-43 increased in the local tissue of heart in depression model group, the PI of depression model group was much higher than in control group (p < 0.01). Conclusions: The increased heart rate, decreased fADP in atrial and ventricular tissue and increased PI of 5-HT and GAP-43 are the typical electrophysiologic characteristics of chronic depressive mice models made by unpredicted chronic mild stress method, stress depression may lead to arrhythmia through abnormal sympathetic nerve tension and serotonin change.
文章引用:刘政疆, 刘华, 曾志恒. 慢性应激抑郁大鼠模型心脏电生理变化与5-羟色胺、生长相关蛋白-43影响的研究[J]. 国际神经精神科学杂志, 2017, 6(4): 74-82. https://doi.org/10.12677/IJPN.2017.64012

参考文献

[1] Murray, C.J.L. and Lopez, A.D. (1997) Mortality by Cause for Eight Regions of the World: Global Burden of Disease Study. The Lancet, 349, 1269-1276.
https://doi.org/10.1016/S0140-6736(96)07493-4
[2] Baune, B.T., Stuart, M., Gilmour, A., Wersching, H., Heindel, W., et al. (2012) The Relationship between Subtypes of Depression and Cardiovascular Disease: A Systematic Review of Biological Models. Translational Psychiatry, 2, 1-19.
https://doi.org/10.1038/tp.2012.18
[3] Wyman, L., Crum, R.M. and Celentano, D. (2012) Depressed Mood and Cause-Specific Mortality: A 40-Year General Community Assessment. Annals of Epidemiology, 22, 638-643.
https://doi.org/10.1016/j.annepidem.2012.06.102
[4] Williams, M.S. (2012) Platelets and Depression in Cardiovascular Disease: A Brief Review of the Current Literature. World Journal of Psychiatry, 2, 114-123.
https://doi.org/10.5498/wjp.v2.i6.114
[5] Thombs, B.D., Bass, E.B., Ford, D.E., Stewart, K.J., Tsilidis, K.K., et al. (2006) Prevalence of Depression in Survivors of Acute Myocardial Infarction. Journal of General Internal Medicine, 21, 30-38.
https://doi.org/10.1111/j.1525-1497.2005.00269.x
[6] Whooley, M.A. (2006) Depression and Cardiovascular Disease. JAMA: The Journal of the American Medical Association, 295, 2874-2881.
https://doi.org/10.1001/jama.295.24.2874
[7] Hausberg, M., Hillebrand, U. and Kisters, K. (2007) Addressing Sympathetic Overactivity in Major Depressive Disorder. Journal of Hypertension, 25, 2004-2005.
https://doi.org/10.1097/HJH.0b013e3282ef9819
[8] Vikenes, K., Farstad, M. and Nordrehaug, J.E. (1999) Serotonin Is Associated with Coronary Artery Disease and Cardiac Events. Circulation, 100, 483-489.
https://doi.org/10.1161/01.CIR.100.5.483
[9] Liu, M.-Y., Ren, Y.-P., Zhang, L.-J., et al. (2016) Pretreatment with Ginseng Fruit Saponins Affects Serotonin Expression in an Experimental Comorbidity Model of Myocardial Infarction and Depression. Aging and Disease, 7, 680-686.
https://doi.org/10.14336/AD.2016.0729
[10] Mineur, Y.S., Belzung, C. and Crusio, W.E. (2007) Functional Implications of Decreases in Neurogenesis Following Chronic Mild Stress in Mice. Neuroscience, 150, 251Y9.
[11] Xin, X.W., Wei, L., Lei, W., Rui, Z., et al. (2014) A Neuroendocrine Mechanism of Co-Morbidity of Depression-Like Behavior and Myocardial Injury in Rats. PLoS ONE, 9, e8842.
https://doi.org/10.1371/journal.pone.0088427
[12] D’Aquila, P.S., Newton, J. and Willner, P. (1997) Diurnal Variation in the Effect of Chronic Mild Stress on Sucrose Intake and Preference. Physiology & Behavior, 62, 421-426.
[13] Pechlivanova, D., Tchekalarova, J., Nikolov, R. and Yakimova, K. (2010) Dose-Dependent Effects of Caffeine on Behavior and Thermoregulation in a Chronic Unpredictable Stress Model of Depression in Rats. Behavioural Brain Research, 209, 205-211.
[14] Morgan, J.K., Olino, T.M., McMakin, D.L., Ryan, N.D. and Forbes, E.E. (2013) Neural Response to Reward as a Predictor of Increases in Depressive Symptoms in Adolescence. Neurobiology of Disease, 52, 66-74.
[15] Shen, J., Zhang, J., Deng, M., Liu, Y., Hu, Y. and Zhang, L. (2016) The Antidepressant Effect of Angelica sinensis Extracts on Chronic Unpredictable Mild Stress-Induced Depression Is Mediated via the Up-Regulation of the BDNF Signaling Pathway in Rats. Evidence-Based Complementary and Alternative Medicine, 2016, Article ID: 7434692.
https://doi.org/10.1155/2016/7434692
[16] Kimura, K., Ieda, M. and Fukuda, K. (2012) Development, Maturation, and Trans-Differentiation of Cardiac Sympathetic Nerves. Circulation Research, 110, 325-336.
https://doi.org/10.1161/CIRCRESAHA.111.257253
[17] Fukuda, K., Kanazawa, H., Aizawa, Y., Ardell, J.L. and Shivkumar, K. (2015) Cardiac Innervation and Sudden Cardiac Death. Circulation Research, 116, 2005-2019.
[18] Buchanan, G.F. and Richerson, G.B. (2010) Central Serotonin Neurons Are Required for Arousal to CO2. Proceedings of the National Academy of Sciences, 107, 16354-16359.
https://doi.org/10.1073/pnas.1004587107
[19] Christ, T., Rozmaritsa, N., Engel, A., Berk, E., Knaut, M., Metzner, K., Canteras, M., Ravens, U. and Kaumann, A. (2014) Arrhythmias, Elicited by Catecholamines and Serotonin, Vanish in Human Chronic Atrial Fibrillation. Proceedings of the National Academy of Sciences, 111, 11193-11198.
[20] Ajijola, O.A., Yagishita, D., Patel, K.J., Vaseghi, M., Zhou, W., Yamakawa, K., So, E., Lux, R.L., Mahajan, A. and Shivkumar, K. (2013) Focal Myocardial Infarction Induces Global Remodeling of Cardiac Sympathetic Innervation: Neural Remodeling in a Spatial Context. American Journal of Physiology. Heart and Circulatory Physiology, 305, H1031-H1040.
https://doi.org/10.1152/ajpheart.00434.2013
[21] Schwartz, P.J., Vanoli, E., Stramba-Badiale, M., DeFerrari, G.M., Billman, G.E. and Foreman, R.D. (1988) Autonomic Mechanisms and Sudden Death. New Insights from Analysis of Baroreceptor Reflexes in Conscious Dogs with and without a Myocardial Infarction. Circulation, 78, 969-979.
https://doi.org/10.1161/01.CIR.78.4.969
[22] Sullivan, G.M., Oquendo, M.A., Milak, M., Miller, J.M., Burke, A., Ogden, R.T., et al. (2014) Positron Emission Tomography Quantification of Serotonin1A Receptor Binding in Suicide Attempters with Major Depressive Disorder. JAMA Psychiatry, 72, 169-178.