昆明大气降水稳定同位素与西南(印度)季风强度
Characteristics of Stable Isotopes in Precipitation and Southwest (Indian) Monsoon Intensity at Kunming
DOI: 10.12677/CCRL.2017.65033, PDF, HTML, XML,  被引量 下载: 1,811  浏览: 6,216  科研立项经费支持
作者: 文新宇, 张虎才*:云南师范大学旅游与地理科学学院,高原湖泊生态与全球变化实验室,云南省高原地理过程与环境变化重点实验室,昆明 呈贡
关键词: 大气降水稳定同位素季节和年际变化水汽来源昆明Precipitation Stable Isotope Seasonal and Annual Variation Vapor Source Kunming
摘要: 根据全球降水同位素观测网(GNIP)提供的昆明站大气降水氢氧稳定同位素数据及其气象资料,对昆明站1986~1992、1996~2003年共计15年的月均和年均大气降水氢氧同位素组成及其影响因素进行分析和研究。结果表明:昆明月均及年均同位素组成均落在中国和全球降水同位素的变化范围之内,并呈现明显的季节及年际变化。昆明大气降水中δD和δ18O主要受到水汽来源影响,而且在季节和年际尺度上存在较大差异。经计算得出:昆明雨季(5~10月)降水中氧同位素值81.7%受当地降水量控制,18.3%受气温影响,这说明昆明大气降水中δ18O受降水量和气温的协同影响,但以降水量对其影响为主;通过年降水量与西南季风指数对比证实,昆明年降水量与西南季风指数呈正相关性,但与δ18O呈显著的负相性,由此说明在季风影响显著的单一态地区,可以用降水δ18O值指示降水强度或季风强度,这种季风强度-大气降水量-δ18O三者之间的关系可为研究石笋中所蕴含的环境信息提供依据。另外,通过与香港降水同位素对比研究,发现二者的d值虽然均呈现旱季高于雨季的季节性变化趋势,但它们的平均d值几乎相同,由于昆明与香港所处地理位置和距离海洋远近的差异明显,说明二者的水汽来源不同,昆明降水主要受印度洋的西南季风控制,香港降水则主要来源于太平洋控制的东南季风。昆明大气降水线斜率和截距的季节及年际变化趋势可用云下二次蒸发和动力分馏效应来解释。
Abstract: Using isotope and meteorology data at Kunming station from the GNIP, the average monthly and annual hydrogen and oxygen stable isotopic compositions and the main factors of 15 years (1986-1992 and 1996-2003) at Kunming station were analyzed. The average monthly and annual hydrogen and oxygen stable isotopic compositions fall within the scope of changes in China and the global isotopes of precipitation, and the seasonal and interannual variations are significant. Hydrogen and oxygen stable isotopic compositions of precipitation at Kunming are mainly influenced by vapor source. There exist obvious differences in the seasonal and interannual scales. The local precipitation amount and air temperature determine 81.7% and 18.3% oxygen isotope values in the rainy season, respectively. Even the δ18O in precipitation affected by the precipitation amount and air temperature, the precipitation amount has a stronger affect on the δ18O in precipitation than the air temperature. In addition, the relationship between annual precipitation and Indian monsoon indexes show a positive correlation, but a significant negative correlation with δ18O in precipitation, illustrating that δ18O in precipitation indicates monsoon or rainfall intensity. The relationship between monsoon intensity and precipitation amount and the δ18O in precipitation can provide a scientific support on the meaning of the isotope of the stalagmites. Comparing the isotopes of precipitation in Kunming with that from Hong Kong station, their d values have distinct seasonality with lower values in the rainy season and higher values in the dry season, but they have almost similar values. Nevertheless, geographical location and distance from sea are different, illustrating that the vapor sources are different. Precipitation in Kunming is affected mostly by southwest monsoon from Indian Ocean, but the rainfall in Hong Kong is mainly controlled by southeast monsoon from Pacific Ocean. The seasonal and interannual variation trends of slope and intercept of Kunming precipitation can be explained by below-cloud secondary evaporation and dynamic fractionation effect.
文章引用:文新宇, 张虎才. 昆明大气降水稳定同位素与西南(印度)季风强度[J]. 气候变化研究快报, 2017, 6(5): 297-307. https://doi.org/10.12677/CCRL.2017.65033

参考文献

[1] Price, R.M., Swart, P.K. and Willoughby, H.E. (2008) Seasonal and Spatial Variation in the Stable Isotopic Composition (δ18O and δD) of Precipitation in South Florida. Journal of Hydrology, 358, 193-205.
https://doi.org/10.1016/j.jhydrol.2008.06.003
[2] Dansgaard, W. (1964) Stable Isotopes in Precipitation. Tellus, 16, 436-468.
https://doi.org/10.3402/tellusa.v16i4.8993
[3] Guan, H., Simmons, C.T. and Love, A.J. (2009) Orographic Controls on Rain Water Isotope Distribution in the Mount Lofty Rangos of South Australia. Journal of Hydrology, 374, 255-264.
https://doi.org/10.1016/j.jhydrol.2009.06.018
[4] Charles, C.D., Rind, D., Jouzel, J., et al. (1994) Glacial-Interglacial Changes in Moisture Sources for Greenland: Influence on the Ice Core Record of Climate. Science, 263, 508-511.
https://doi.org/10.1126/science.263.5146.508
[5] Merlivat, M. and Jouzel, J. (1979) Global Climatic Interpretation of Deuterium-Oxygen-18 Relationship for Precipitation. Journal of Geophysical Research, 84, 5029-5033.
https://doi.org/10.1029/JC084iC08p05029
[6] Rozanski, K., Sonntag, C. and Munnich, K.O. (1981) Factors Controlling Stable Isotope Composition of Modern European Precipitation. Tellus, 34, 142-150.
[7] Johnsen, S.J., Dansgaard, W. and White, J.W.C. (1989) The Origin of Arctic Precipitation under Present and Glacial Conditions. Tellus Series B-chemical & Physical Meteorology, 41B, 452-468.
https://doi.org/10.1111/j.1600-0889.1989.tb00321.x
[8] Araguás-Araguás, L., Froehlich, K. and Rozanski, K. (1998) Stable Isotope Composition of Precipitation over Southeast Asia. Journal of Geophysical Research Atmospheres, 103, 2872-2874.
[9] Zhang, X.P., Liu, J.M., Tian, L.D., et al. (2004) Variations of δ18O in Precipitation along Vapor Transport Paths. Advance in Atmospheric Sciences, 21, 562-572.
https://doi.org/10.1007/BF02915724
[10] 段旭, 距建华, 肖子牛, 等. 云南气候异常物理过程及预测信号的研究[M]. 北京: 气象出版社, 2000: 1-23.
[11] 徐祥德, 陶诗言, 王继志, 等. 青藏高原–季风水汽输送“大三角扇型”影响区域特征与中国区域旱涝异常的关系[J]. 气象学报, 2002, 60(3): 257-266.
[12] Pearce, R.P. and Mohanty, U.C. (1984) Onsets of Asian Summer Monsoon, 1979-1982. Journal of Atmosphere Science, 41, 1620-1639.
https://doi.org/10.1175/1520-0469(1984)041<1620:OOTASM>2.0.CO;2
[13] 庞红喜, 何元庆, 张忠林, 等. 季风降水中δ18O与季风水汽来源[J]. 科学通报, 2005, 50(20): 81-84.
[14] 姚檀栋, 丁良福, 蒲健辰, 等. 青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系[J]. 科学通报, 1991, 36(20): 1570-1573.
[15] Tian, L.D., Yao, T.D., Schuster, P.F., et al. (2003) Oxygen-18 Concentrations in Recent Precipitation and Ice Cores on the Tibetan Plateau. Journal of Geophysical Research, 108, 4293-4302.
https://doi.org/10.1029/2002JD002173
[16] Tian, L.D., Yao, T.D., White, J.C.W., et al. (2005) Westerly Moisture Transport to the Middle of Himalayas Revealed from the High Deuteriun Excess. Chinese Science Bulletin, 50, 1026-1030.
https://doi.org/10.1360/04wd0030
[17] 田立德, 姚檀栋, 蒲健辰, 等. 拉萨夏季降水中稳定同位素变化特征[J]. 冰川冻土, 1997, 19(4): 295-301.
[18] Zhang, X.P., Shi, Y.F. and Yao, T.D. (1995) Variational Features of Precipitation δ18O in Northeast Qinghai-Tibet Plateau. Science in China (B), 38, 854-864.
[19] Yao, T.D., Thompson, L.G., Jiao, K.Q., et al. (1995) Recent Warming as Recorded in the Qinghai Tibetan Cryosphere. Annuals of Glaciology, 21, 196-200.
https://doi.org/10.1017/S0260305500015810
[20] Li, G., Zhang, X.P., Xu, Y.P., et al. (2016) Synoptic Time-Series Surveys of Precipitation δ18O and Its Relationship with Moisture Sources in Yunnan, Southwest China. Quaternary International, 1-12.
[21] 庞洪喜, 何元庆, 卢爱刚, 等. 天气尺度下丽江季风降水中δ18O变化[J]. 科学通报, 2006, 51(10): 1218-1223.
[22] Celle, J.H., Travi, Y. and Blavoux, B. (2001) Isotopic Typology of the Precipitation in the Western Mediterranean Region at Three Different Time Scale. Geophysical Research Letters, 28, 1215-1218.
https://doi.org/10.1029/2000GL012407
[23] Liotta, M., Bellissimo, S., Favara, R., et al. (2008) Isotopic Composition of Single Rain Events in the Central Mediterranean. Journal of Geophysical Research, 113, D16304.
https://doi.org/10.1029/2008JD009996
[24] Bar-Matthews, M., Ayalon, A. and Kaufman, A. (1997) Late Quaternary Paleoclimate in the Eastern Mediterranean Region from Stable Isotope Analysis of Speleothems at Soreq Cave, Israel. Quaternary Research, 47, 155-168.
https://doi.org/10.1006/qres.1997.1883
[25] Neff, U., Burns, S.J., Mangini, A., et al. (2001) Strong Coherence between Solar Variability and the Monsoon in Oman between 9 and 6 kyr Ago. Nature, 411, 290-293.
https://doi.org/10.1038/35077048
[26] Wang, Y.J., Cheng, H., Edwards, R.L., et al. (2001) A High-Resolution Absolute-Dated Late Pleistocende Monsoon Record from Hulu Cave, China. Science, 294, 2345-2348.
https://doi.org/10.1126/science.1064618
[27] 丁悌平. 氢氧同位素地球化学[M]. 北京: 地质出版社, 1980: 61-65.
[28] 陈中笑, 程军, 郭品文, 等. 中国降水稳定同位素的分布特点及其影响因素[J]. 大气科学学报, 2010, 33(6): 667-679.
[29] 张琳, 陈宗宇, 聂振龙, 等. 我国不同时间尺度的大气降水氧同位素与气温的相关系分析[J]. 核技术, 2008, 31(9): 715-720.
[30] 章新平, 刘晶淼, 孙维贞. 西南水汽通道上昆明站降水中的稳定同位素[J]. 长江流域资源与环境, 2005, 14(5): 665-669.
[31] 李平, 章新平, 张新主, 等. 云南腾冲地区大气降水中氢氧稳定同位素特征[J]. 长江流域资源与环境, 2013, 22(11): 1458-1465.
[32] Guan, H., Simmons, C.T. and Love, A.J. (2009) Orographic Controls on Rain Water Isotope Distribution in the Mount Lofty Rangos of South Australia. Journal of Hydrology, 374, 255-264.
https://doi.org/10.1016/j.jhydrol.2009.06.018
[33] 朱敏, 左瑞亭, 张铭. 南海季风爆发与风向改变指数关系初探[J]. 气象科学, 2009, 29(6): 787-792.
[34] 卫克勤, 林瑞芬. 论季风气候对我国雨水同位素组成的影响[J]. 地球化学, 1994, 23(1): 33-41.
[35] 李广. 我国西南地区降水稳定同位素变化特征及水汽来源追踪的研究[D]: [硕士学位论文]. 长沙, 湖南师范大学, 2014.
[36] 涂林玲, 王华, 冯玉梅. 桂林地区大气降水的D和18O同位素的研究[J]. 中国岩溶, 2004, 23(4): 304-309.
[37] 张琳, 陈立, 刘君, 等. 香港地区大气降水中的D和18O同位素研究[J]. 生态环境学报, 2009, 18(2): 572-577.
[38] 章新平, 刘晶淼, 中尾正义, 等. 我国西南地区降水中过量氘指示水汽来源[J]. 冰川冻土, 2009, 31(4): 613-617.
[39] 吴华武, 章新平, 孙广禄, 等. 长江流域大气降水中δ18O变化与水汽来源[J]. 气象与环境学报, 2011, 27(5): 07-12.
[40] Craig, H. (1961) Standard for Reporting Concentration of Deuterium and Oxygen-18 in Natural Water. Science, 133, 1702.
https://doi.org/10.1126/science.133.3465.1702
[41] Yurtsever, Y. (1975) Worldwide Survey of Stable Isotopes in Precipitation. International Report, IAEA, Vienna.
[42] Ding, Y.H., Wang, Z.Y. and Sun, Y. (2008) Inter-Decadal Variation of the Summer Precipitation in East China and Its Association with Decreasing Asian Summer Monsoon. Part I: Observed Evidences. International Journal of Climatology, 28, 1139-1161.
https://doi.org/10.1002/joc.1615
[43] 吴夏, 张晓燕, 张美良, 等. 大气降水中稳定同位素组成的高分别率记录——以桂林地区为例[J]. 长江流域资源与环境, 2013, 22(2): 182-188.