CuS纳米粒子的水热制备及其光催化性能研究
Hydrothermal Preparation and Photocatalytic Properties of CuS Nanoparticles
DOI: 10.12677/MS.2017.78091, PDF, HTML, XML, 下载: 1,799  浏览: 5,989  科研立项经费支持
作者: 刘兆梁, 罗 啸, 马亚楠, 张 雄, 张传坤, 邵 城, 李 伟:湖北汽车工业学院理学院,湖北 十堰;张 喻:湖北汽车工业学院材料科学与工程学院,湖北 十堰
关键词: 纳米材料CuS光催化水热法Nanomaterials CuS Photocatalytic Hydrothermal
摘要: 硫化铜作为一种重要的过渡金属硫化物在催化、纳米开关和储能等领域具有广泛的应用。本文采用简易水热法,以柠檬酸为表面活性剂,硫酸铜和硫脲为原料,反应10 h成功合成CuS纳米粒子。采用XRD、SEM等手段对产物进行了表征分析。以甲基橙为目标污染物,分别在紫外光和可见光照射下考察了CuS纳米粒子的光催化性能。结果表明:柠檬酸浓度会显著影响CuS的尺寸和分散性;CuS纳米粒子同时具有紫外和可见光催化活性。
Abstract: Copper sulfide as an important transition metal sulfide is widely used in catalytic, nanoswitch and energy storage. In this paper, CuS nanoparticles were successfully synthesized by a facile hydro-thermal method, using citric acid as surfactant and copper sulfate and thiourea as raw materials. The as-prepared samples were characterized by XRD and SEM. And the photocatalytic properties of CuS nanoparticles were investigated by using methyl orange as pollutant under ultraviolet and visible light irradiation. The results show that the size and dispersibility of CuS nanoparticles is determined by the citric acid concentration. And the CuS nanoparticles exhibit photocatalytic ac-tivity under both ultraviolet and visible light irradiation.
文章引用:刘兆梁, 罗啸, 马亚楠, 张雄, 张传坤, 邵城, 张 喻, 李伟. CuS纳米粒子的水热制备及其光催化性能研究[J]. 材料科学, 2017, 7(8): 690-695. https://doi.org/10.12677/MS.2017.78091

参考文献

[1] Cheng, J., Pan, Y., Zhu, J., Li, Z., Pan, J. and Ma, Z. (2014) Hybrid Network CuS Monolith Cathode Materials Synthe-sized via Facile In Situ Melt-Diffusion for Li-Ion Batteries. Journal of Power Sources, 257, 192-197.
https://doi.org/10.1016/j.jpowsour.2014.01.124
[2] Chang, L., He, X., Chen, L. and Zhang, Y. (2017) Mercap-tophenylboronic Acid-Capped Mn-doped ZnS Quantum Dots for Highly Selective and Sensitive Fluorescence Detection of Glycoproteins. Sensors & Actuators B Chemical, 243, 72-77.
https://doi.org/10.1016/j.snb.2016.11.121
[3] Khanchandani, S., Kundu, S., Patra, A. and Ganguli, A.K. (2017) Shell Thickness Dependent Photocatalytic Properties of ZnO/CdS Core-Shell Nanorods. Journal of Physical Chemistry C, 116, 23653-23662.
https://doi.org/10.1021/jp3083419
[4] Bessekhouad, Y., Robert, D. and Weber, J.V. (2004) Bi2S3 /TiO2 and CdS/TiO2 Heterojunctions as an Available Configuration for Photocatalytic Degradation of Organic Pollutant. Journal of Photochemistry & Photobiology A Chemistry, 163, 569-580.
https://doi.org/10.1016/j.jphotochem.2004.02.006
[5] Sakamoto, T., Sunamura, H., Kawaura, H. and Hasegawa, T. (2003) Nanometer-Scale Switches Using Copper Sulfide. Applied Physics Letters, 82, 3032-3034.
https://doi.org/10.1063/1.1572964
[6] Chen, G.Y., Wei, Z.Y., Jin, B., Zhong, X.B., Wang, H., Zhang, W.X., et al. (2013) Hydrothermal Synthesis of Copper Sulfide with Novel Hierarchical Structures and Its Application in Lithium-Ion Batteries. Applied Surface Science, 277, 268-271.
https://doi.org/10.1016/j.apsusc.2013.04.041
[7] Huang, Q.L., Chen, H., Zhang, Y.C. and Wu, C.L. (2011) CuS Nanostructures Prepared by a Hydrothermal Method. Journal of Alloys & Compounds, 509, 6382-6387.
https://doi.org/10.1016/j.jallcom.2011.02.167
[8] Sahraei, R., Noshadi, S. and Goudarzi, A. (2015) Growth of Nanocrystalline CuS Thin Films at Room Temperature by a Facile Chemical Deposition Method. Rsc Advances, 5, 77354-77361.
https://doi.org/10.1039/C5RA12400J
[9] Wang, F., Dong, H., Pan, J., Li, J., Li, Q. and Xu, D. (2014) One-Step Electrochemical Deposition of Hierarchical CuS Nanostructures on Conductive Substrates as Robust, High-Performance Counter Electrodes for Quantum-Dot-Sensitized Solar Cells. Journal of Physical Chemistry C, 118, 19589-19598.
https://doi.org/10.1021/jp505737u
[10] 王杰. 不同形貌CuS微/纳米结构的制备及其可见光催化性能[D]: [硕士学位论文]. 郑州: 郑州大学; 2013.
[11] 耿小红, 王倩, 于洋, 景志红. CuS纳米材料的水热法制备及其光催化性质研究[J]. 化学世界, 2017(58): 200-205.
[12] Banerjee, N. and Krupanidhi, S.B. (2012) Synthesis and Structural Characterization of Two-Dimensional Hierarchical Covellite Nano-Structures. Materials Chemistry and Physics, 137, 466-471.
https://doi.org/10.1016/j.matchemphys.2012.09.032