测量设备无关量子密钥分发方案安全性研究
Security Analysis on Measurement-Device-Independent Quantum Key Distribution Protocol
DOI: 10.12677/MP.2017.76030, PDF, HTML, XML, 下载: 2,003  浏览: 5,077  国家自然科学基金支持
作者: 李宏欣*, 闫 宝:战略支援部队信息工程大学洛阳校区,河南 洛阳;数学工程与先进计算国家重点实验室,河南 郑州;王相宾, 刘 欣, 韩 宇, 王 伟:战略支援部队信息工程大学洛阳校区,河南 洛阳
关键词: 量子密钥分发测量设备无关侧信道攻击标记单光子源Quantum Key Distribution Measurement Device Independent Side-Channel Attack HSPS
摘要: 量子密钥分发(quantum key distribution,简称QKD)因其具有理论上的无条件安全性而备受关注,但是在实际系统中,QKD会由于设备的非完美性而易受到量子黑客的攻击。测量设备无关(measurement device independent,简称MDI) QKD方案的提出,很好地解决了这一问题。本文首先介绍MDI-QKD协议的最新研究进展和实现原理,总结归纳了协议在实际应用中的优越性与不足,在分析MDI-QKD改进协议的基础上,重点研究提升方案安全密钥生成率的方法并进行理论证明。
Abstract: Quantum key distribution (QKD) has been paid much attention because of its theoretical uncondi-tional security. However, in the actual system, QKD will be vulnerable to Quantum hackers because of non-perfection of equipment. The proposal of the measurement device independent (MDI) QKD provide a good solution to this problem. In this paper, we firstly introduce the latest research progress and implementation principles of the MDI-QKD protocol. And then, we summarize the advantages and disadvantages of the protocol in the practical application. Based on the analysis of the MDI-QKD improvement protocol, our research is mainly focused on the method of lifting scheme secure key generation rate and theoretical proof.
文章引用:李宏欣, 王相宾, 刘欣, 韩宇, 闫宝, 王伟. 测量设备无关量子密钥分发方案安全性研究[J]. 现代物理, 2017, 7(6): 257-268. https://doi.org/10.12677/MP.2017.76030

参考文献

[1] Lo, H.K., Curty, M. and Qi, B. (2012) Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 108, Article ID: 103503.
https://doi.org/10.1103/PhysRevLett.108.130503
[2] Wang, Q. and Wang, X.B. (2013) An Efficient Im-plementation of the Decoy-State Measurement-Device-Independent Quantum Key Distribution with Heralded Single-Photon Sources. Physical Review A, 88, Article ID: 052332.
https://doi.org/10.1103/PhysRevA.88.052332
[3] Rubenok, J.A., Slater, P., Chan, I., et al. (2013) Real-World Two-Photon Interference and Proof-of-Principle Quantum Key Distribution Immune to Detector Attacks. Physical Review Letters, 111, Article ID: 130501.
https://doi.org/10.1103/PhysRevLett.111.130501
[4] 东晨, 赵尚宏, 赵卫虎, 等. 非对称信道传输效率的测量设备无关量子密钥分配研究[J]. 物理学报, 2014, 63(3): 28-32.
[5] Valivarthi, V.R.R., Chan, P., Lucio-Martinez, I., et al. (2014) Measure-ment-Device Independent Quantum Key Distribution with id210 Detectors. Quantum Science and Technology.
[6] Tang, Y.L., Yin, H.L., Chen, S.J., et al. (2014) Measurement-Device-Independent Quantum Key Distribution over 200km. Physical Review Letters, 113, Article ID: 190501.
https://doi.org/10.1103/PhysRevLett.113.190501
[7] Abruzzo, S., Kampermann, H. and Bruß, D. (2013) Long-Distance Measurement-Device-Independent Quantum Key Distribution Without Quantum Memories. Applied Physics Letters, 103, Article ID: 061101.
[8] Valivarthi, R., Lucio-Martinez, I., Chan, P., et al. (2015) Measurement-Device-Independent Quantum Key Distribution: From Idea towards Application. Journal of Modern Optics, 62, 1141-1150.
https://doi.org/10.1080/09500340.2015.1021725
[9] 毛钱萍, 赵生妹, 王乐, 等. 基于波分复用技术的测量设备无关量子密钥分发[J]. 量子电子学报, 2017, 34(1): 47- 49.
[10] 尹华磊, 刘慧, 陈腾云. 超过404km的测量设备无关量子密钥分发实验[J]. 信息安全研究, 2017, 3(1): 75-78.
[11] 薛阳, 马丽华, 石磊, 魏家华, 罗均文. 基于修正相干态光源的MDI-QKD全局估计性能分析[J]. 量子电子学报, 2014, 34(4): 447-449.
[12] 朱卓丹, 赵尚弘, 苏力华, 王星宇. 预报相干光子对的测量设备无关量子密钥分发协议研究[J]. 激光与光电子学进展, 2017, 54(12): 122703.
[13] 姬一鸣, 李云霞, 石磊, 蒙文, 崔树民, 许振华. 基于MDI-QKD的多用户接入组网方案研究[J]. 光网络, 2015(11): 10-11.
[14] 孙颖, 赵尚弘, 东晨. 基于量子存储和纠缠光源的测量设备无关量子密钥分配网络[J]. 光学学报, 2016, 36(3): 037001.
[15] Roberts, G.L., Lucamarini, M., Yuan, Z.L. (2017) Experimental Measurement-Device-Independent Quantum Digital Signatures. Physical Review A, 8.
[16] Wang, C., Guo, GC. and Wang, S. (2017) Measurement-Device-Independent Quantum Key Distribution Robust against Environmental Disturbances. Optica, 4, 1016.
[17] 颜龙, 孙豪, 赵生妹. 应用诱骗态的光子轨道角动量测量设备无关量子密钥分发协议的研究[J]. 信号处理, 2014, 30(11): 1276-1277.
[18] Gottesman, D., Lo, H.K., Lütkenhaus, N., et al. (20040 Security of Quantum Key Distribution with Imperfect Devices. Quantum information & computation, 5, 325-360.
[19] Hwang, W.Y. (2003) Quantum Key Distribution with High Loss: Toward Global Secure Communication. Physical Review Letters, 91, Article ID: 057901.
[20] Inamori, H. (2002) Security of Practical Time-Reversed EPR Quantum Key Distribution. Algorithmica, 34, 340-365.
[21] Feihu Xu, Bing Qi, Zhongfa Liao, and Hoi-Kwong Lo. Practical aspects of measurement-device-independent quantum key distribution[J]. New Journal of Physics, 2013, 15(6): 061101.
[22] Castelletto, S.A. and Scholten, R.E. (2008) Heralded Single Photon Sources: A Route towards Quantum Communication Technology and Photon Standards. The European Physical Journal Applied Physics, 41, 181-194.
[23] Yurke, B. and Potasek. M. (1987) Obtainment of Thermal Noise from a Pure Quantum State. Physical Review A, 36, 3464.
[24] Lu’tkenhaus, N. (2000) Security against Individual Attacks for Realistic Quantum Key Distribution. Physical Review A, 61, Article ID: 052304.
[25] 朱峰, 王琴. 基于指示单光子源的量子密钥分配协议[J]. 光学学报, 2014(6): 266-271.
[26] 罗军. 诱骗态量子密钥分配协议的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2011.