牛樟芝菌丝体粉对高脂饮食诱导大鼠肥胖之影响
Effect of Antrodia cinnamomea Powder on Obesity in High-Fat Diet-Induced Rats
DOI: 10.12677/HJFNS.2017.64031, PDF, HTML, XML,  被引量 下载: 1,652  浏览: 2,627 
作者: 张晓苓:葡萄王生技股份有限公司,台湾 桃园;徐庆琳:中山医学大学营养学系,台湾 台中;中山医学大学附设医院营养科,台湾 台中;陈劲初:葡萄王生技股份有限公司,台湾 桃园;国立台湾大学食品科技研究所,台湾 台北;实践大学食品营养与保健生技学系,台湾 台北;彰化师范大学生物技术研究所,台湾 彰化;中原大学生物科技学系,台湾 桃园
关键词: 牛樟芝菌丝体肥胖体脂Antrodia cinnamomea Obesity Body Fat
摘要: 本研究使用之高脂饮食饲料以AIN-93G饲料为基础加以调整油脂比例,添加25%猪油。将动物分成三组,分别为(1) 正常饮食组(normal diet, ND)喂食正常饲料、(2) 高脂饮食组(high-fat diet, HFD)、(3) 高脂饮食给予牛樟芝菌丝体粉末(Ac)。结果得知,高脂饮食之组别其最终体重显著高于正常饮食组(p < 0.05),在高脂饮食诱导之肥胖大鼠给予牛樟芝菌丝体粉末组别之大鼠结果显示,可显著降低其体重增加之情形(p < 0.05)。在体重改变量和食物利用率亦可得到相同之结果。Ac对高脂饮食诱导肥胖大鼠可显著降低肝脏总脂质、三酸甘油酯与肝脏胆固醇含量(p < 0.05)。综合以上结果显示牛樟芝菌丝体粉可降低体脂肪,增加油脂代谢。
Abstract: The aim of the study was to assess the effect of Antrodia cinnamomea powder in rats fed a high-fat diet. Rats were divided into three groups and fed the following diets: the control (Normal diet, ND), high-fat diets (AIN-93G with 25% added lard, HFD), and a high-fat diet supplemented with Antrodia cinnamomea powder (Ac). Results showed that the body weight in the HFD group was significantly higher than in the normal diet group (p < 0.05) while the body weight gain was significantly lower in Ac group than in HFD group rats (p < 0.05). Body weight changes and feed efficiency also showed similar patterns. In liver, the addition of Ac could significantly decrease HFD-induced total fat, triglyceride and cholesterol accumulation (p < 0.05). These results suggest that Ac may contribute to reduction of the body fat mass and promote lipid metabolism in HFD-induced obese rats.
文章引用:张晓苓, 徐庆琳, 陈劲初. 牛樟芝菌丝体粉对高脂饮食诱导大鼠肥胖之影响[J]. 食品与营养科学, 2017, 6(4): 244-252. https://doi.org/10.12677/HJFNS.2017.64031

参考文献

[1] World Health Organization (1998) Preventing and Managing the Global Epideuvic. World Health Organization, Geneva.
[2] 洪建德, 王斐斐. 减重门诊就诊者之分析[J]. 中华营养学会会志, 1992(17): 215-227.
[3] Furuyashiki, T., Nagayasu, H., Aoki, Y., Bessho, H., Hashimoto, T., Kanazawa, K. and Ashida, H. (2004) Tea Catechin Suppresses Adipocyte Differentiation Accompanied by Down-Regulation of HPP-GARγ2 and C/EBPα in 3T3-L1 Cells. Bioscience, Biotechnology, and Biochemistry, 68, 2353-2359.
https://doi.org/10.1271/bbb.68.2353
[4] Youn, B.S., Min, S.S., Park, K.S., Lee, H.W., Yu, R. and Kwon, B.S. (2004) The Role of Adipocytokines in Adipocyte-Related Pathological Processes. Drug News & Perspectives, 17, 293-298.
https://doi.org/10.1358/dnp.2004.17.5.829032
[5] Van Gaal, L.F., Mertens, I.L. and De Block, C.E. (2006) Mechanisms Linking Obesity with Cardiovascular Disease. Nature, 444, 875-880.
https://doi.org/10.1038/nature05487
[6] Kopelman, P.G. (2000) Obesity as a Medical Problem. Nature, 404, 635-643.
https://doi.org/10.1038/35007508
[7] Wilding, J. (1997) Science, Medicine and the Future: Obesity Treatment. British Medical Journal, 315, 997-1000.
https://doi.org/10.1136/bmj.315.7114.997
[8] McKane, W.R., Stevens, A.B., Woods, R., Andrews, W.J., Henry, R.W. and Bell, P.M. (1990) The Assessment of Hepatic and Peripheral Insulin Sensitivity in Hypertriglyceridemia. Metabolism, 39, 1240-1245.
https://doi.org/10.1016/0026-0495(90)90177-E
[9] Eckel, R.H., Barouch, W.W. and Ershow, A.G. (2002) Report of the National Heart, Lung, and Blood Institute— National Institute of Diabetes and Digestive and Kidney Diseases Working Group on the Pathophysiology of Obesity-Associated Cardiovascular Disease. Circulation, 105, 2923-2929.
https://doi.org/10.1161/01.CIR.0000017823.53114.4C
[10] Wanless, I.R. and Lentz, J.S. (1990) Fatty Liver Hepatitis (Steatohepatitis) and Obesity: An Autopsy Study with Analysis of Risk Factors. Hepatology, 12, 1106-1110.
https://doi.org/10.1002/hep.1840120505
[11] Saadeh, S. (2007) Nonalcoholic Fatty Liver Disease and Obesity. Nutrition in Clinical Practice, 22, 1-10.
https://doi.org/10.1177/011542650702200101
[12] Sowers, J.R. (2003) Obesity as a Cardiovascular Risk Factor. The American Journal of Medicine, 115, 37S-41S.
https://doi.org/10.1016/j.amjmed.2003.08.012
[13] Mcternan, C.L., Mcternan, P.G., Harte, A.L., Levick, P.L., Barnett, A.H. and Kumar, S. (2002) Resistin, Central Obesity, and Type 2 Diabetes. Lancet, 359, 46-47.
https://doi.org/10.1016/S0140-6736(02)07281-1
[14] Barton, M., Carmona, R., Morawietz, H., d’Uscio, L.V., Goettsch, W., Hillen, H., Haudenschild, C.C., Krieger, J.E., Munter, K., Lattmann, T., Luscher, T.F. and Shaw, S. (2000) Obesity Is Associated with Tissue-Specific Activation of Renal Angiotensin-Converting Enzyme in Vivo: Evidence for a Regulatory Role of Endothelin. Hypertension, 35, 329-336.
https://doi.org/10.1161/01.HYP.35.1.329
[15] Hall, J.E., Kuo, J.J., da Silva, A.A., de Paula, R.B., Liu, J. and Tallam, L. (2003) Obesity-Associated Hypertension and Kidney Disease. Current Opinion in Nephrology and Hypertension, 12, 195-200.
https://doi.org/10.1097/00041552-200303000-00011
[16] Hursting, S.D., Nunez, N.P., Varticovski, L. and Vinson, C. (2007) The Obesity-Cancer Link: Lessons Learned from a Fatless Mouse. Cancer Research, 67, 2391-2393.
https://doi.org/10.1158/0008-5472.CAN-06-4237
[17] Miyoshi, Y., Funahashi, T., Kihara, S., Taguchi, T., Tamaki, Y., Matsuzawa, Y. and Noguchi, S. (2003) Association of Serum Adiponectin Levels with Breast Cancer Risk. Clinical Cancer Research, 9, 5699-5704.
[18] Manabe, Y., Toda, S., Miyazaki, K. and Sugihara, H. (2003) Mature Adipocytes, but Not Preadipocytes, Promote the Growth of Breast Carcinoma Cells in Collagen Gel Matrix Culture through Cancer-Stromal Cell Interactions. The Journal of Pathology, 201, 221-228.
https://doi.org/10.1002/path.1430
[19] Mai, V., Colbert, L.H., Berrigan, D., Perkins, S.N., Pfeiffer, R., Laviqne, J.A., Lanza, E., Haines, D.C., Schatzkin, A. and Hursting, S.D. (2003) Calorie Restriction and Diet Composition Modulate Spontaneous Intestinal Tumorigenesis in ApcMin Mice through Different Mechanisms. Cancer Research, 63, 1752-1755.