激光粒度仪测定纳米Gd2O3:Er3+粉体粒度的研究
Laser Particle Size Determination of Nanometer Gd2O3:Er3+ Powder Particle Size Study
DOI: 10.12677/NAT.2017.74009, PDF, HTML, XML, 下载: 1,484  浏览: 4,876 
作者: 郭婷婷, 肖林久, 华 丽:沈阳化工大学,辽宁 沈阳
关键词: 激光粒度分析仪纳米Gd2O3:Er3+粒径Laser Particle Size Analyzer Nanometer Gd2O3:Er3+ Particle Size
摘要: 利用Nano317型激光粒度分析仪对纳米Gd2O3:Er3+的粒径测定样品处理方法进行研究,分别考察了分散介质、纳米Gd2O3:Er3+溶液的浓度、分散剂种类及用量、超声震荡和静置时间等处理条件对粒径测定的影响。结果表明:以蒸馏水为分散介质,纳米Gd2O3:Er3+的浓度为0.1 g/l,1 g/l六偏磷酸钠为分散剂,超声时间大于30 min时,激光粒度分析仪测定值达到稳定,测得粒径大小与扫描电镜结果一致。
Abstract: Using the Nano 317 laser particle size analyzer to study the particle size of nanometer Gd2O3:Er3+, respectively investigates the dispersion medium, Nano Gd2O3:Er3+ solution concentration, kind and amount of dispersants, ultrasonic oscillation and static time and so on processing conditions on measurement of particle size. The results showed that the distilled water as dispersion medium, nano Gd2O3:Er3+ concentration is 0.1 g/l, 1 g/l sodium hexametaphosphate as dispersant, ultrasonic time greater than 30 min, laser particle size analyzer to determine value achieve stability, particle size measurement and scanning electron microscopy (sem) results.
文章引用:郭婷婷, 肖林久, 华丽. 激光粒度仪测定纳米Gd2O3:Er3+粉体粒度的研究[J]. 纳米技术, 2017, 7(4): 75-84. https://doi.org/10.12677/NAT.2017.74009

参考文献

[1] Bridot, J., Faure, A., Laurent, S., et al. (2007) Hybrid Gadolinium Oxide Nanoparticles: Multimodal Contrast Agents for In Vivo Imaging. Journal of the American Chemical Society, 129, 5076-5084.
https://doi.org/10.1021/ja068356j
[2] Lee, B.I., Lee, K.S., Lee, J.H., et al. (2009) Synthesis of Colloidal Aqueous Suspensions of a Layered Gadolinium Hydroxide: A Potential MRI Contrast Agent. Dalton Transactions, 14, 2490-2495.
https://doi.org/10.1039/b823172a
[3] Hong, M., Kwo, J., Kortan, A.R., et al. (1999) Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation. Science, 283, 1897.
https://doi.org/10.1126/science.283.5409.1897
[4] Leskelä, M., Kukli, K. and Ritala, M. (2006) Rare-Earth Oxide Thin Films for Gate Dielectrics in Microelectronics. Cheminform, 37, 27-34.
https://doi.org/10.1016/j.jallcom.2005.10.061
[5] 张玉敏, 尹周澜, 陈萍. 超细钛硅分子筛粒径的激光粒度分析[J]. 分析测试学报, 2006, 25(6): 112-114.
[6] 王刚. 用于近纳米颗粒粒度测量的模拟探测动态光散射技术研究[D]: [博士学位论文]. 长春: 吉林大学, 2006.
[7] 程鹏, 高抒, 李徐生. 激光粒度仪测试结果及其与沉降法、筛析法的比较[J]. 沉积学报, 2001, 19(3): 449-455.
[8] 周新木, 曾慧慧, 张丽, 等. 激光粒度仪在超细白炭黑粒度分析中的应用[J]. 无机盐工业,2007, 39(5): 55-57, 62.
[9] 卢寿慈. 工业悬浮液[M]. 北京: 化学工业出版社, 2002.
[10] 刘润静, 靳悦淼, 赵华, 等. 激光粒度仪测定纳米硫酸钡粉体粒度的研究[J]. 无机盐工业, 2014, 46(8): 37-40.
[11] 沈钟, 赵振国, 康万利. 胶体与表面化学[M]. 第4版. 北京: 化学工业出版社, 2012: 74-80.