共轭微孔聚合物在CO2气体存储和分离方面的应用基础研究
Conjugated Polycarbazole Network for Gas Storage and Separation
DOI: 10.12677/HJCET.2017.76043, PDF, HTML, XML, 下载: 1,509  浏览: 2,727  科研立项经费支持
作者: 姜飞, 陈桂娥, 毛海舫, 俞俊, 叶静, 姚子健, 张建勇, 邓维:上海应用技术大学,化学与环境工程学院,上海
关键词: 共轭微孔吸附存储分离Conjugated Microporous Polymers Absorption Storage Separation
摘要: 本研究以Z型结构的二己基噻吩并苯并噻二唑(DTBT)单体和螺旋桨结构的连噻吩(TT)为中间核,通过改变单体的空间扭曲度,来增加聚合物的比表面积,设计了两类共轭微孔聚合物P-1 (Cz-DTBT-Cz)和P-2 (Cz-TT-Cz)来用于CO2气体的吸附、储存及分离。热重分析表明两聚合物的稳定性良好;随后测定了纯气体N2的吸附等温线,氮气吸附等温线显示P-1的比表面积(752 m2∙g−1)是P-2 (589 m2∙g−1)的1.52倍,并利用Clausius Clapeyron方程计算出了相关的吸附焓值,测试结果表明,P-1在各个方面的性能都优于P-2,在清洁能源与环境领域具有较大的发展潜力。
Abstract: Two Conjugated Polycarbazole frameworks P-1 (Cz-DTBT-Cz) and P-2 (Cz-TT-Cz) with Z-type DTBT moiety and propeller-type TT bithiophene as the core were synthesized to decrease the emissions of greenhouse gas such as CO2 and so on. The unique structure of DTBT moiety and propeller-type TT bithiophene moiety is a superior candidate to constructed organic porous ma-terials. The results turn out that the performances of obtained polymers are quite different based on the two strategies. Both the thermogravimetric curve shows that the two compounds are very stable. The BET result shows that P1 with a BET of 752 m2∙g−1 is 1.52 folders of P2 (589) m2∙g−1. CO2 isotherms show P1 owns the better gas uptake abilities. The results make it clear that the synthetic path and polymerization methods can make great difference on the performance of materials and the path 1 reported here is much better selection to prepare the P-1 (Cz-DTBT-Cz) with ultra-micropores and brilliant ability for gas adsorption.
文章引用:姜飞, 陈桂娥, 毛海舫, 俞俊, 叶静, 姚子健, 张建勇, 邓维. 共轭微孔聚合物在CO2气体存储和分离方面的应用基础研究[J]. 化学工程与技术, 2017, 7(6): 315-324. https://doi.org/10.12677/HJCET.2017.76043

参考文献

[1] Trends in Atmospheric Carbon Dioxide, U. S. Department of Commerce, National Oceanic & Atmospheric Administration.
[2] Rowsell, J.L.C. and Yaghi, O.M. (2005) Strategies for Hydrogen Storage in Metal-Organic Frameworks. Angewandte Chemie International Edition, 44, 4670-4679.
https://doi.org/10.1002/anie.200462786
[3] Murray, L.J., Dinca, M. and Long, J.R. (2009) Hydrogen Storage in Metal-Organic Frameworks. Chemical Society Reviews, 38, 1294-1314.
https://doi.org/10.1039/b802256a
[4] Dawson, R., Cooper, A.I. and Adams, D.J. (2013) Chemical Functionalization Strategies for Carbon Dioxide Capture in Microporous Organic Polymers. Polymer International, 62, 345-352.
https://doi.org/10.1002/pi.4407
[5] Sumida, K., Rogow, D.L., Mason, J.A., McDonald, T.M., Bloch, E.D., Herm, Z.R., Bae, T.H. and Long, J.R. (2012) Carbon Dioxide Capture in Metal-Organic Frameworks. Chemical Reviews, 112, 724-781.
https://doi.org/10.1021/cr2003272
[6] Jiang, F., Sun, J., Yang, R., Qiao, S., An, Z., Huang, J., Mao, H., Chen, G. and Ren, Y. (2016) A Facile Approach to Prepare a Microporous Polycarbazole P-Tetra(4-(N-Carbazolyl)Phenyl)Silane Network with High CO2 Storage and Separation Properties. New Journal of Chemistry, 40, 4969-4973.
https://doi.org/10.1039/C5NJ03215F
[7] Jiang, J.X., Su, F., Trewin, A., Wood, C.D., Campbell, N.L., Niu, H., Dickinson, C., Ganin, A.Y., Rosseinsky, M.J., Khimyak, Y.Z. and Cooper, A.I. (2007) Conjugated Microporous Poly(aryleneethynylene) Networks. Angrewandte Chemie, 46, 8574-8578.
https://doi.org/10.1002/anie.200701595
[8] Preis, E., Widling, C., Brunklaus, G., Schmidt, J., Thomas, A. and Scherf, U. (2013) Microporous Polymer Networks (MPNs) Made in Metal-Free Regimes: Systematic Optimization of a Synthetic Protocol toward N-Arylcarbazole-Based MPNs. ACS Macro Letters, 2, 380-383.
https://doi.org/10.1021/mz400126f
[9] Vilela, F., Zhang, K. and Antonietti, M. (2012) Conjugated Porous Polymers for Energy Applications. Energy & Environmental Science, 5, 7819-7832.
https://doi.org/10.1039/c2ee22002d
[10] Xie, Y., Wang, T.T., Liu, X.H., Zou, K. and Deng, W.Q. (2013) Capture and Conversion of CO2 at Ambient Conditions by a Conjugated Microporous Polymer. Nature Communications, 4, 1960.
https://doi.org/10.1038/ncomms2960
[11] Gu, C., Chen, Y.C., Zhang, Z.B., Xue, S.F., Sun, S.H., Zhang, K., Zhong, C.M., Zhang, H.H., Pan, Y.Y., Lv, Y., Yang, Y.Q., Li, F.H., Zhang, S.B., Huang, F. and Ma, Y.G. (2013) Electrochemical Route to Fabricate Film-Like Conjugated Microporous Polymers and Application for Organic Electronics. Advanced Materials, 25, 3443-3448.
https://doi.org/10.1002/adma.201300839
[12] Liu, X., Xu, Y. and Jiang, D. (2012) Conjugated Microporous Polymers as Molecular Sensing Devices: Microporous Architecture Enables Rapid Response and Enhances Sensitivity in Fluorescence-On and Fluorescence-Off Sensing. Journal of the American Chemical Society, 134, 8738-8741.
https://doi.org/10.1021/ja303448r
[13] Jiang, F., Wang, J., Li, J., Wang, N., Bao, X., Wang, T., Yang, Y., Lan, Z. and Yang, R. (2013) Supramolecular Assemblies with Symmetrical Octahedral Structures—Synthesis, Characterization, and Electrochemical Properties. European Journal of Inorganic Chemistry, 2013, 375-379.
https://doi.org/10.1002/ejic.201200923
[14] Qiao, S., Du, Z., Huang, W. and Yang, R. (2014) Influence of Aggregated Morphology on Carbon Dioxide Uptake of Polythiophene Conjugated Organic Networks. Journal of Solid State Chemistry, 212, 69-72.
https://doi.org/10.1016/j.jssc.2013.12.025
[15] Chen, X., Qiao, S., Du, Z., Zhou, Y. and Yang, R. (2013) Synthesis and Characterization of Functional Thienyl-Phosphine Microporous Polymers for Carbon Dioxi. Macromolecular Rapid Communications, 34, 1181-1185.
https://doi.org/10.1002/marc.201300328
[16] Jiang, F., Wang, N., Du, Z., Wang, J., Lan, Z. and Yang, R. (2012) Thiophene-Coated Functionalized M12L24 Spheres: Synthesis, Characterization, and Electrochemical Properties. Chemistry—An Asian Journal, 7, 2230-2234.
https://doi.org/10.1002/asia.201200413
[17] Kiskan, B. and Weber, J. (2012) ACS Macro Letters, 133, 19416-19421.
[18] Schmidt, J., Weber, J., Epping, J.D., Antonietti, M. and Thomas, A. (2009) Microporous Conjugated Poly(thienylene arylene) Networks. Advanced Materials, 21,702-705.
https://doi.org/10.1002/adma.200802692
[19] Weber, J. and Thomas, A. (2008) Toward Stable Interfaces in Conjugated Polymers: Microporous Poly(p-phenylene) and Poly(phenyleneethynylene) Based on a Spirobifluorene Building Block. Journal of the American Chemical Society, 130, 6334-6335.
https://doi.org/10.1021/ja801691x
[20] Cheng, G., Hasell, T., Trewin, A., Adams, D.J. and Cooper, A.I. (2012) Soluble Conjugated Microporous Polymers. Angewandte Chemie, 51, 12727-12731.
https://doi.org/10.1002/anie.201205521
[21] Jiang, F., Choy, W.C.H., Li, X.C., Zhang, D. and Chen, J.Q. (2015) Post-treatment-Free Solution-Processed Non-stoichiometric NiOx Nanoparticles for Efficient Hole-Transport Layers of Organic Optoelectronic Devices. Advanced Materials, 27, 2930-2937.
https://doi.org/10.1002/adma.201405391
[22] Budd, P.M., Ghanem, B.S., Makhseed, S., Mckeown, N.B., Msayib, K.J. and Tattershall, C.E. (2004) Polymers of Intrinsic Microporosity (PIMs): Robust, Solution-Processable, Organic Nanoporous Materials. Chemical Communications, 0, 230-231.
https://doi.org/10.1039/b311764b