Kou跳扩散模型下美式期权定价的隐–显三阶SBDF法
IMEX Third-Order SBDF Scheme for Pricing American Options under Kou’s Jump-Diffusion Models
DOI: 10.12677/AAM.2018.71014, PDF, HTML, XML, 下载: 1,897  浏览: 2,568  国家自然科学基金支持
作者: 贾翔宇, 许作良:中国人民大学,信息学院,北京
关键词: 隐–显方法线性多步法跳扩散模型期权定价傅里叶稳定性分析Implicit-Explicit Methods Linear Multistep Methods Jump-Diffusion Model Option Pricing Fourier Stability Analysis
摘要: 本文讨论跳扩散过程下期权定价模型的偏积分微分方程的隐–显三阶SBDF时间离散格式。我们引入参数c∈[0,1],使由跳跃产生的零阶项变成一个关于c的凸组合,并将其分别加入到隐式部分和显式部分;并应用傅里叶分析研究该方法的稳定性。在适当的假设条件和时间步长限制下,我们证明了隐–显三阶SBDF方法对于所有的c∈[0,1]是条件稳定的。数值实验表明了该方法的有效性。
Abstract: We consider IMEX third-order SBDF time discretization scheme for the partial integro-differential equation derived for the pricing of options under a jump-diffusion process. The scheme is defined by a convex combination parameter c∈[0,1], which divides the zeroth-order term due to the jumps between the implicit and explicit parts in the time discretization. This scheme is studied through Fourier stability analysis. It is found that, under suitable assumptions and time step re-strictions, the IMEX third-order SBDF scheme is conditionally stable for all c∈[0,1]. Numerical experiments show the effectiveness of the proposed method.
文章引用:贾翔宇, 许作良. Kou跳扩散模型下美式期权定价的隐–显三阶SBDF法[J]. 应用数学进展, 2018, 7(1): 109-117. https://doi.org/10.12677/AAM.2018.71014

参考文献

[1] Black, F. and Scholes, M. (1973) The Pricing of Options and Corporate Liabilities. Policitical Economy, 81, 637-659.
https://doi.org/10.1086/260062
[2] Merton, R. (1976) Option Pricing When Underlying Stock Returns Are Discontinuous. Journal of Financial Economics, 3, 125-144.
https://doi.org/10.1016/0304-405X(76)90022-2
[3] Kou, S.G. (2002) A Jump-Diffusion Model for Option Pricing. Management Science, 48, 1086-1101.
https://doi.org/10.1287/mnsc.48.8.1086.166
[4] Carr, P., Geman, H., Madan, D.B. and Yor, M. (2002) The Fine Structure of Asset Returns: An Empirical Investigation. Journal of Business, 75, 305-332.
https://doi.org/10.1086/338705
[5] Andersen, L. and Andreasen, J. (2000) Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Option Pricing. Review of Derivatives Research, 4, 231-262.
https://doi.org/10.1023/A:1011354913068
[6] Forsyth, P.A., d’Halluin, Y. and Vetzal, K.R. (2005) Robust Numerical Methods for Contingent Claims under Jump-Diffusion Processes. IMA Journal of Numerical Analysis, 25, 87-112.
https://doi.org/10.1093/imanum/drh011
[7] Tavella, D. and Randall, C. (2000) Pricing Financial In-struments: The Finite Difference Method. John Wiley & Sons, Chichester.
[8] Salmi, S. and Toivanen, J. (2011) An Iterative Method for Pricing American Options under Jump-Diffusion Models. Applied Numerical Mathematics, 61, 821-831.
https://doi.org/10.1016/j.apnum.2011.02.002
[9] Ascher, U., Ruuth, S. and Wetton, B. (1995) Implic-it-Explicit Methods for time-Dependent Partial Differential Equations. SIAM Journal on Numerical Analysis, 32, 797-823.
https://doi.org/10.1137/0732037
[10] Frank, J., Hundsdorfer, W. and Verwer, J. (1997) On the Stability of Implicit-Explicit Linear Multistep Methods. Applied Numerical Mathematics, 25, 193-205.
https://doi.org/10.1016/S0168-9274(97)00059-7
[11] Salmi, S. and Toivanen, J. (2014) IMEX Schemes for Pricing Options under Jump-Diffusion Models. Applied Numerical Mathematics, 84, 33-45.
https://doi.org/10.1016/j.apnum.2014.05.007
[12] Hundsdorfer, W. and Ruuth, S.J. (2007) IMEX Extensions of Linear Multistep Methods with General Monotonicity and Boundedness Properties. Journal of Computational Physics, 225, 2016-2042.
https://doi.org/10.1016/j.jcp.2007.03.003
[13] Toivanen, J. (2008) Numerical Valuation of European and American Options under Kou’s Jump-Diffusion Model. SIAM Journal on Scientific Computing, 30, 1949-1970.
https://doi.org/10.1137/060674697
[14] Wang, L., Chen, B., Chen, C., Chen, Z. and Liu, G. (2016) Application of Linear Mean-Square Estimation in Ocean Engineering. China Ocean Engineering, 30, 149-160.
https://doi.org/10.1007/s13344-016-0007-9
[15] Chen, B., Liu, G. and Wang, L. (2017) Predicting Joint Return Period under Ocean Extremes Based on a Maximum Entropy Compound Distribution Model. International Journal of Energy and Environmental Science, 2, 117-126.