微分求积法在悬臂梁结构非线性动力学中的应用研究
Application of Differential Quadrature Method to Nonlinear Dynamics of Cantilever Beam Structures
DOI: 10.12677/IJM.2018.71001, PDF, HTML, XML, 下载: 1,554  浏览: 3,428  国家自然科学基金支持
作者: 吴鹦泽, 王冬梅:天津科技大学理学院,天津
关键词: 微分求积法偏微分控制方程悬臂梁分叉混沌Differential Quadrature Method Partial-Differential Governing Equation Cantilever Beam Bifurcations Chaotic Motions
摘要: 利用微分求积法对受横向载荷和轴向载荷联合作用的粘弹性悬臂梁的非线性动力学偏微分控制方程直接离散求解,并提出了一种新的边界条件施加方法处理悬臂梁的边界条件。在数值结果的基础上结合非线性动力学理论,利用分叉图,时间历程图,相图等对受横向载荷和轴向载荷联合作用的粘弹性悬臂梁的非线性动力学特性进行了分析。由以上图形得到的其非线性动力学性质是一样的,因而表明微分求积法以及施加边界条件的新方法能够有效地用来分析悬臂梁结构的非线性动力学性质。
Abstract: In this paper, a differential quadrature method (DQM) is developed to study the nonlinear dy-namic behaviors of a viscoelastic cantilever beam subjected to transverse loads and axial loads. The partial differential nonlinear governing equation of the cantilever beam is discretized in space region using DQM. For the boundary conditions of the cantilever beam, a new method is proposed to deal with the boundary conditions. Based on the numerical results, the nonlinear dynamical behaviors, such as the bifurcations and chaotic motions of the viscoelastic cantilever beam, are investigated by using the bifurcation diagrams, Poincare maps and phase portraits. It is drawn the conclusion from numerical simulation results that the DQM and a new method of applying the boundary conditions can be effectively used to analyze the nonlinear dynamics properties of cantilever beam structures.
文章引用:吴鹦泽, 王冬梅. 微分求积法在悬臂梁结构非线性动力学中的应用研究[J]. 力学研究, 2018, 7(1): 1-13. https://doi.org/10.12677/IJM.2018.71001

参考文献

[1] Nayfeh, A.H. and Pai, P.F. (1989) Non-Linear Non-Planar Parametric Responses of an Inextensional Beam. International Journal of Nonlinear Mechanics, 24, 139-158.
https://doi.org/10.1016/0020-7462(89)90005-X
[2] 冯景. 水平轴风力发电机旋转叶片的非线性动力学研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2002.
[3] 王凤霞. 柔性悬臂梁的非线性振动与全局动力学的研究[D]: [硕士学位论文]. 北京: 北京工业大学, 2002.
[4] Dwivedy, S.K. and Kar, R.C. (2003) Simultaneous Combination and 1:3:5 International Resonances in a Parametrically Excited beam-Mass System. International Journal of Nonlinear Mechanics, 38, 585-596.
https://doi.org/10.1016/S0020-7462(01)00117-2
[5] Young, T.H. and Juan, C.S. (2003) Dynamic Stability and Response of Fluttered Beams Subjected to Random Follower Forces. International Journal of Nonlinear Mechanics, 38, 889-901.
https://doi.org/10.1016/S0020-7462(02)00035-5
[6] Yao, M.H. and Zhang, W. (2005) Multi-Pulse Shilnikov Orbits and Chaotics Dynamics for Nonlinear Nonplanar Motion of a Cantilever Beam. International Journal of Bifurcation and Chaos, 15, 3923-3952.
https://doi.org/10.1142/S0218127405014398
[7] Zhang, W. and Yao, M.H. (2008) Theories of Multi-Pulse Global Bifurcations for High-Dimensional Systems and Applications to Cantilever Beam. International Journal of Modern Physics B, 22, 4089-4141.
https://doi.org/10.1142/S021797920804898X
[8] Zhang, W., Yao, M.H. and Zhang, J.H. (2009) Using the Extended Melnikov Method to Study the Multi-Pulse Global Bifurcations and Chaos of a Cantilever Beam. Journal of Sound and Vibration, 319, 541-569.
https://doi.org/10.1016/j.jsv.2008.06.015
[9] Nili Ahmadabadi, Z. and Khadem, S.E. (2012) Nonlinear Vibration Control of a Cantilever Beam by a Nonlinear Energy Sink. Mechanism and Machine Theory, 50, 134-149.
https://doi.org/10.1016/j.mechmachtheory.2011.11.007
[10] Ma, H., Zeng, J., Lang, Z.Q., Zhang, L., Guo, Y.Z. and Wen, B.C. (2016) Analysis of the Dynamic Characteristics of a Slant-Cracked Cantilever Beam. Mechanical Systems and Signal Processing, 75, 261-279.
https://doi.org/10.1016/j.ymssp.2015.12.009
[11] Bellman, R.E. and Casti, J. (1971) Differential Quadrature and Long-Term Integration. Journal of Mathematical Analysis and Applications, 34, 235-238.
https://doi.org/10.1016/0022-247X(71)90110-7
[12] Bert, C.W., Jang, S.K. and Striz, A.J. (1987) New Methods for Analyzing Vibration of Structural Components. 28th Structures, Structural Dynamics and Materials Conference, Monterey, CA, 6-8 April 1987, 936-943.
https://doi.org/10.2514/6.1987-950
[13] Jam, J.E., Maleki, S. and Andakhshideh, A. (2011) Non-Linear Bending Analysis of Moderately Thick Functionally Graded Plates Using Generalized Differential Quadrature Method. International Journal of Aero-space Sciences, 1, 49-56.
[14] Zhang, W. and Wang, X.W. (2011) Elastoplastic Buckling Analysis of Thick Rectangular Plates by Using the Differential Quadrature Method. Computers and Mathematics with Applications, 61, 44-61.
https://doi.org/10.1016/j.camwa.2010.10.028
[15] Tahouneh, V. and Yas, M.H. (2012) 3-D Free Vibration Analysis of Thick Functionally Graded Annular Sector Plates on Pasternak Elastic Foundation via 2-D Differential Quadrature Method. Acta Mechanica, 223, 1879-1897.
https://doi.org/10.1007/s00707-012-0648-6
[16] Zhou, Y.F. and Wang, Z.M. (2014) Application of the Differential Quadrature Method to Free Vibration of Viscoelastic Thin Plate with Linear Thickness Variation. Meccanica, 49, 2817-2828.
https://doi.org/10.1007/s11012-014-0043-6
[17] Behera, L. and Chakraverty, S. (2015) Application of Differential Quadrature Method in Free Vibration Analysis of Nanobeams Based on Various Nonlocal Theories. Computers and Mathematics with Applications, 69, 1444-1462.
https://doi.org/10.1016/j.camwa.2015.04.010
[18] Wang, X.W. and Yuan, Z.X. (2017) Accurate Stress Analysis of Sandwich Panels by the Differential Quadrature Method. Applied Mathematical Modelling, 43, 548-565.
https://doi.org/10.1016/j.apm.2016.11.034
[19] Malik, A.S., Boyko, O., Atkar, N. and Young, W.F. (2001) A Comparative Study of MR Imaging Profile of Titanium Pedicle Screws. Acta Radiologica, 42, 291-293.
https://doi.org/10.1080/028418501127346846
[20] Shu, C. (2000) Differential Quadrature and Its Application in Engineering. Springer, Berlin, 25-44, 187-223.
https://doi.org/10.1007/978-1-4471-0407-0
[21] Ren, L., Sun, L.P. and Xu, L.J. (2012) On Numerical Solutions of Differential-Algebraic Equations with Hessenberg Index-2. Journal of Shanghai Normal University (Natural Sciences), 41, 231-236.