|
[1]
|
Park, S., Aalipour, A., Vermesh, O., et al. (2017) Towards Clinically Translatable In Vivo Nanodiagnostics. Nature Reviews Materials, 2, 17014. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hyeon, T., Lee, S.S., Lee, S.S., et al. (2001) Synthesis of Highly Crystalline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process. Cheminform, 123, 12798. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Song, H.-T., et al. (2005) Surface Modulation of Magnetic Nanocrystals in the Development of Highly Efficient Magnetic Resonance Probes for Intracellular Labeling. Journal of the American Chemical Society, 127, 9992-9993. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ling, D., Lee, N. and Hyeon, T. (2015) Chemical Synthesis and Assembly of Uniformly Sized Iron Oxide Nanoparticles for Medical Applications. Accounts of Chemical Research, 48, 1276-1285. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Kim, B.H., Lee, N., Kim, H., et al. (2011) Large-Scale Synthesis of Uniform and Extremely Small-Sized Iron Oxide Nanoparticles for High-Resolution T1 Magnetic Resonance Imaging Contrast Agents. Journal of the American Chemical Society, 133, 12624-12631. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, Z., Wei, L., Gao, M.Y., et al. (2010) One-Pot Reaction to Synthesize Biocompatible Magnetite Nanoparticles. Advanced Materials, 17, 1001-1005. [Google Scholar] [CrossRef]
|
|
[7]
|
Liong, M., Angelos, S., Choi, E., et al. (2009) Mesostructured Multifunctional Nanoparticles for Imaging and Drug Delivery. Journal of Materials Chemistry, 19, 6251-6257. [Google Scholar] [CrossRef]
|
|
[8]
|
Chen, Y., Chen, H., Sun, Y., et al. (2011) Multifunctional Mesoporous Composite Nanocapsules for Highly Efficient MRI-Guided High-Intensity Focused Ultrasound Cancer Surgery. Angewandte Chemie, 50, 12505-12509. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Lee, C.-H., Cheng, S.-H., Wang, Y.-J., et al. (2009) Near-Infrared Mesoporous Silica Nanoparticles for Optical Imaging: Characterization and In Vivo Biodistribution. Advanced Functional Materials, 19, 215-222. [Google Scholar] [CrossRef]
|
|
[10]
|
施剑林, 陈雨, 陈航榕. 多功能介孔氧化硅基纳米诊疗剂的研究进展[J]. 无机材料学报, 2013, 28(1): 1-11.
|
|
[11]
|
Phillips, E., Penatemedina, O., Zanzonico, P.B., et al. (2014) Clinical Translation of an Ultrasmall Inorganic Optical-PET Imaging Nanoparticle Probe. Science Translational Medicine, 6, 260ra149. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Daniel, M.C. and Astruc, D. (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews, 104, 293. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Sepúlveda, B., Angelomé, P.C., Lechuga, L.M., et al. (2009) LSPR-Based Nanobiosensors. Nanotoday, 4, 244-251. [Google Scholar] [CrossRef]
|
|
[14]
|
Okuno, M. and Hamaguchi, H. (2010) Multifocus Confocal Raman Microspectroscopy for Fast Multimode Vibrational Imaging of Living Cells. Optics Letters, 35, 4096-4098. [Google Scholar] [CrossRef]
|
|
[15]
|
Hainfeld, J.F., Slatkin, D.N. and Smilowitz, H.M. (2004) The Use of Gold Nanoparticles to Enhance Radiotherapy in Mice. Physics in Medicine & Biology, 49, 309-315. [Google Scholar] [CrossRef]
|
|
[16]
|
Wang, H., Zheng, L., Guo, R., et al. (2012) Den-drimer-Entrapped Gold Nanoparticles as Potential CT Contrast Agents for Blood Pool Imaging. Nanoscale Research Letters, 7, 1-8. [Google Scholar] [CrossRef]
|
|
[17]
|
Bardhan, R., Lal, S., Joshi, A., et al. (2011) Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research, 44, 936-946. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yang, X., Stein, E., Wei, X., et al. (2008) Photoacoustic Tomography with Novel Optical Contrast Agents Based on Gold Nanocages or Nanoparticles Containing Near-Infrared Dyes. Proceedings of SPIE—The International Society for Optical Engineering, 6856, 1-10. [Google Scholar] [CrossRef]
|
|
[19]
|
Chen, G., Qiu, H., Prasad, P.N. and Chen, X. (2014) Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics. Chemical Reviews, 114, 5161-5214. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Haase, M. and Schfer, H. (2011) Upconverting Nanoparticles. An-gewandte Chemie International Edition, 50, 5808-5829. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gu, Z., et al. (2013) Recent Advances in Design and Fabrication of Upconversion Nanoparticles and Their Safe Theranostic Applications. Advanced Materials, 25, 3758-3779. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Wang, F., Banerjee, D., Liu, Y., et al. (2010) Upconversion Nanoparticles in Biological Labeling, Imaging, and Therapy. Analyst, 135, 1839-1854.
|
|
[23]
|
Chatterjee, D.K., Rufaihah, A.J. and Zhang, Y. (2008) Upconversion Fluorescence Imaging of Cells and Small Animals Using Lanthanide Doped Nanocrystals. Biomaterials, 29, 937. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Yu, X., Li, M., Xie, M., et al. (2010) Dopant-Controlled Synthesis of Water-Soluble Hexagonal NaYF4, Nanorods with Efficient Upconversion Fluorescence for Multicolor Bioimaging. Nano Research, 3, 51-60. [Google Scholar] [CrossRef]
|
|
[25]
|
Wang, F. and Liu, X. (2008) Upconversion Multicolor Fi-ne-Tuning: Visible to Near-Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles. Journal of the American Chemical Society, 130, 5642-5643. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Park, Y.I., et al. (2009) Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent. Advanced Materials, 21, 4467-4471. [Google Scholar] [CrossRef]
|
|
[27]
|
余启钰, 刘春艳. 用于生物标记的半导体量子点研究[J]. 影像科学与光化学, 2006, 24(5): 382-390.
|
|
[28]
|
Hines, M.A. and Guyot-Sionnest, P. (1998) Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals. The Journal of Physical Chemistry B, 102, 3655-3657.
|
|
[29]
|
Prieto, J.A., Armelles, G., Groenen, J., et al. (1999) Size and Strain Effects in the E1-Like Optical Transitions of InAs/InP Self-Assembled Quantum Dot Structures. Applied Physics Letters, 74, 99-101. [Google Scholar] [CrossRef]
|
|
[30]
|
Bruchez Jr, M., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. (1998) Semiconductor Nanocrystals as Fluorescent Biological Labels. Science, 281, 2013-2015. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Han, M., Gao, X., Su, J.Z. and Nie, S. (2001) Quan-tum-Dot-Tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology, 19, 631-635. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Gaponik, N., et al. (2002) Efficient Phase Transfer of Luminescent Thi-ol-Capped Nanocrystals: From Water to Nonpolar Organic Solvents. Nano Letters, 2, 803-806. [Google Scholar] [CrossRef]
|
|
[33]
|
Murray, C.B., Norris, D.J. and Bawendi, M.G. (1993) Synthesis and Characterization of Nearly Monodisperse Semiconductor Nanocrystallites. Journal of the American Chemical Society, 115, 8706-8715. [Google Scholar] [CrossRef]
|
|
[34]
|
Robert, E.B., Andrew, M.S. and Nie, S.M. (2004) Quantum Dots in Biology and Medicine. Journal of Physics E, 25, 1-12.
|
|
[35]
|
Gao, X., Cui, Y., Levenson, R.M., et al. (2004) In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dot. Nature Biotechnology, 22, 969-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Louie, A. (2010) Multimodality Imaging Probes: Design and Challenges. Chemical Reviews, 110, 3146-3195. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kim, D., Yu, M.K., Lee, T.S., et al. (2011) Amphiphilic Polymer-Coated Hybrid Nanoparticles as CT/MRI Dual Contrast Agents. Nanotechnology, 22, 155101. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zhu, J., Lu, Y., Li, Y., et al. (2014) Synthesis of Au-Fe3O4 Heterostructured Nanoparticles for In Vivo Computed Tomography and Magnetic Resonance Dual Model Imaging. Nanoscale, 6, 199. [Google Scholar] [CrossRef]
|
|
[39]
|
Wu, C., Li, J., Pang, P., et al. (2014) Polymeric Vector-Mediated Gene Transfection of MSCs for Dual Bioluminescent and MRI Tracking In Vivo. Biomaterials, 35, 8249-8260. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Suchý, M., Bartha, R. and Hudson, R.H.E. (2013) “Click” Chemistry toward Bis(DOTA-Derived) Heterometallic Complexes: Potential Bimodal MRI/PET(SPECT) Molecular Imaging Probes. RSC Advances, 3, 3249-3259. [Google Scholar] [CrossRef]
|
|
[41]
|
Zhu, J., Zhang, B., Tian, J., et al. (2015) Synthesis of Heterodimer Radionuclide Nanoparticles for Magnetic Resonance and Single-Photon Emission Computed Tomography Dual-Modality Imaging. Nanoscale, 7, 3392-3395. [Google Scholar] [CrossRef]
|