|
[1]
|
Salvaggio, F., Hodgkinson, J.T., Carro, L., et al. (2016) The Synthesis of Quinolone Natural Products from Pseudonocardia sp. Eu-ropean Journal of Organic Chemistry, 2016, 434-437. [Google Scholar] [CrossRef]
|
|
[2]
|
Abe, H., Kawada, M., Inoue, H., et al. (2013) Synthesis of Intervenolin, an Antitumor Natural Quinolone with Unusual Substituents. Organic Letters, 15, 2124-2127. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Sun, J., Zhu, H., Yang, Z.M., et al. (2013) Synthesis, Molecular Modeling and Biological Evaluation of 2-Aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione Quinolone Derivatives as Novel An-ticancer Agent. Cheminform, 60, 23-28.
|
|
[4]
|
Suthar, S.K., Jaiswal, V., Lohan, S., et al. (2013) Novel Quinolone Substituted Thia-zolidin-4-Ones as Anti-Inflammatory, Anticancer Agents: Design, Synthesis and Biological Screening. European Journal of Medicinal Chemistry, 63, 589-602. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Li, J., Zheng, T.C., Jin, Y., et al. (2018) Synthesis, Molecular Docking and Biological Evaluation of Quinolone Derivatives as Novel Anticancer Agents. Chemical & Pharmaceutical Bulletin, 66, 55-60.
[Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Yan, L., Liu, D., Wang, X.H., et al. (2017) Bacterial Plasmid-Mediated Quinolone Resistance Genes in Aquatic Environments in China. Scientific Reports, 7, Article ID: 40610.
|
|
[7]
|
Rodriguez, C.N., Rodriguezmorales, A.J., Garcia, A., et al. (2005) Quinolone Antimicrobial Resistance in Some Enterobacteria: A 10-Year Study in a Venezuelan General Hospital. International Journal of Antimicrobial Agents, 25, 546-550. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Correia, S., Poeta, P., Igrejas, G., et al. (2017) Mechanisms of Quinolone Action and Resistance: Where Do We Stand? Journal of Medical Microbiology, 66, 551-559. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Robicsek, A., Jacoby, G.A. and Hooper, D.C. (2006) The Worldwide Emergence of Plasmid-Mediated Quinolone Resistance. Lancet Infectious Diseases, 6, 629-640. [Google Scholar] [CrossRef]
|
|
[10]
|
孙慧萍, 蔡力力, 阎赋琴, 等. 喹诺酮类药物的作用机制及不良反应[J]. 中华医院感染学杂志, 2008, 18(7): 1014-1016.
|
|
[11]
|
Samyde, J., Petit, P., Hillaire-Buys, D., et al. (2016) Quinolone Antibiotics and Suicidal Behavior: Analysis of the World Health Organization’s Adverse Drug Reactions Database and Discussion of Potential Mechanisms. Psychopharmacology, 233, 2503-2511. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kang, J., Wang, L., Chen, X.L., et al. (2001) Interactions of a Series of Fluoroquinolone Antibacterial Drugs with the Human Cardiac K+ Channel HERG. Molecular Pharmacology, 59, 122-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
饶勇, 曾振灵, 杨桂香, 等. 液相色谱–质谱联用检测牛奶中氟喹诺酮类药物残留的确证方法[J]. 中国农业科学, 2007, 40(5): 1033-1041.
|
|
[14]
|
赵扬, 郑志明, 金社胜, 等. 液质联用法同时测定猪粪便中16种(氟)喹诺酮类药物残留[J]. 农业环境科学学报, 2011, 30(6): 1248-1253.
|
|
[15]
|
刘博, 薛南冬, 杨兵, 等. 高效液相色谱–荧光检测法同时分析鸡粪中六种氟喹诺酮类抗生素[J]. 农业环境科学学报, 2014, 33(5): 1050-1056.
|
|
[16]
|
农业部决定在食品动物中停止使用洛美沙星等4种兽药(中华人民共和国农业部公告第2292号) [J]. 中国兽药杂志, 2015, 49(9): 40.
|
|
[17]
|
Zhang, J.-R., Liao, Y.-Y., Deng, J.-C., Tang, Z.-L., Xu, Y.-L., Xu, L. and Tang, R.-Y. (2017) DABCO-Promoted Decarboxylative Acylation: Synthesis of α-Keto and α,β-Unsaturated Amides or Esters. Asian Journal of Organic Chemistry, 6, 305-312. [Google Scholar] [CrossRef]
|
|
[18]
|
郑亚杰. 基于LC-MS/MS方法的喹诺酮类药物的杂质谱研究[D]: [博士学位论文]. 北京: 北京协和医学院, 2014.
|
|
[19]
|
李婧. 氟喹诺酮类抗生素的直接质谱分析研究[D]: [硕士学位论文]. 南昌: 东华理工大学, 2015.
|
|
[20]
|
郭泽琴. 几种喹诺酮类原料药影响因素的液-质联用技术分析[D]: [硕士学位论文]. 重庆: 重庆大学, 2014.
|