|
[1]
|
Valiev, R.Z., Islamgaliev, R.K., Kuzmina, N.F., et al. (1998) Strengthening and Grain Refinement in an Al-6061 Metal Matrix Composite through Intense Plastic Straining. Scripta Materialia, 40, 117-122.
[Google Scholar] [CrossRef]
|
|
[2]
|
Gleiter, H. (1989) Nanocrystalline Materials. Progress in Materials Science, 33, 223-315.
[Google Scholar] [CrossRef]
|
|
[3]
|
肖纪美. 对纳米晶体材料的思考[J]. 材料科学与工程学报, 2001, 19(3): 10-14.
|
|
[4]
|
王素梅, 孙康宁, 毕见强. 大塑性变形法制备块体纳米材料[J]. 金属热处理, 2003, 28(5): 43-45.
|
|
[5]
|
Fan, Z., Jiang, H., Sun, X., et al. (2009) Microstructures and Mechanical Deformation Behaviors of Ultrafine-Grained Commercial Pure (Grade 3) Ti Processed by Two-Step Severe Plastic Deformation. Materials Science & Engineering A, 527, 45-51. [Google Scholar] [CrossRef]
|
|
[6]
|
Li, Z., Fu, L., Fu, B., et al. (2012) Effects of Annealing on Microstructure and Mechanical Properties of Nano-Grained Titanium Produced by Combination of Asymmetric and Symmetric Rolling. Materials Science & Engineering A, 558, 309-318. [Google Scholar] [CrossRef]
|
|
[7]
|
Lu, K. and Lu, J. (1999) Surface Nanocrystallization (SNC) of Metallic Materials-Presentation of the Concept behind a New Approach. Journal of Materials Science & Technology, 15, 193-197.
|
|
[8]
|
Azadmanjiri, J., Berndt, C.C., Kapoor, A., et al. (2015) Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment (SMAT). Critical Reviews in Solid State & Material Sciences, 40, 164-181.
[Google Scholar] [CrossRef]
|
|
[9]
|
王积森, 张国松, 孙金全, 等. 一种金属材料表面纳米化方法[P]. 中国专利,. CN1696353A. 2005-05-16.
|
|
[10]
|
Wang, Z.B., Tao, N.R., Li, S., et al. (2003) Effect of Surface Nanocrystallization on Friction and Wear Properties in Low Carbon Steel. Materials Science & Engineering A, 352, 144-149. [Google Scholar] [CrossRef]
|
|
[11]
|
Yong, X.P., Liu, G., Lu, K., et al. (2003) Characterization and Properties of Nanostructured Surface Layer in a Low Carbon Steel Subjected to Surface Mechanical Attrition. Journal of Materials Science & Technology, 19, 1-4.
|
|
[12]
|
Zhang, H.W., Hei, Z.K., Liu, G., et al. (2003) Formation of Nanostructured Surface Layer on AISI 304 Stainless Steel by Means of Surface Mechanical Attrition Treatment. Acta Materialia, 51, 1871-1881.
[Google Scholar] [CrossRef]
|
|
[13]
|
杨晓华, 兑卫真, 刘刚. 表面机械研磨处理对316L不锈钢组织和性能的影响[J]. 材料热处理学报, 2007, 28(2): 118-121.
|
|
[14]
|
Thangaraj, B., Kulandaivelu, R., Min, H.L., et al. (2015) A Facile Method to Modify the Characteristics and Corrosion Behaviour of 304 Stainless Steel by Surface Nanostructuring towards Biomedical Applications. ACS Applied Materials & Interfaces, 7, 17731-17747. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kumar, S.A., Raman, S.G.S., Narayanan, T.S.N.S., et al. (2013) Influence of Counterbody Material on Fretting Wear Behaviour of Surface Mechanical Attrition Treated Ti-6Al-4V. Tribology International, 57, 107-114.
|
|
[16]
|
张淑兰, 陈怀宁, 林泉洪, 等. 工业纯钛的表面纳米化及其机制[J]. 有色金属工程, 2003(4): 5-8.
|
|
[17]
|
Wen, M., Liu, G., Gu, J.F., et al. (2008) The Tensile Properties of Titanium Processed by Surface Mechanical Attrition Treatment. Surface & Coatings Technology, 202, 4728-4733. [Google Scholar] [CrossRef]
|
|
[18]
|
毕海香. 纯铜表面纳米化及其扩散性能研究[D]: [硕士学术论文]. 太原: 太原理工大学, 2008.
|
|
[19]
|
Wen, L., Yuan, Y., Wang, Y., et al. (2015) Effect of Nanocrystalline Surface and Iron-Containing Layer Obtained by SMAT on Tribological Properties of 2024 Al Alloy. Rare Metal Materials & Engineering, 44, 1320-1325.
[Google Scholar] [CrossRef]
|
|
[20]
|
Wu, X., Tao, N., Hong, Y., et al. (2002) Microstructure and Evolution of Mechanically-Induced Ultrafine Grain in Surface Layer of AL-Alloy Subjected to USSP. Acta Materialia, 50, 2075-2084.
[Google Scholar] [CrossRef]
|
|
[21]
|
Wen, L., Wang, Y., Zhou, Y., et al. (2011) Microstructure and Corrosion Resistance of Modified 2024 Al Alloy Using Surface Mechanical Attrition Treatment Combined with Microarc Oxidation Process. Corrosion Science, 53, 473-480.
[Google Scholar] [CrossRef]
|
|
[22]
|
Liu, G., Lu, J. and Lu, K. (2000) Surface Nanocrystallization of 316L Stainless Steel Induced by Ultrasonic Shot Peening. Materials Science & Engineering A, 286, 91-95. [Google Scholar] [CrossRef]
|
|
[23]
|
Chen, C.H., Ren, R.M., Zhao, X.J., et al. (2004) Surface Nanostructures in Commercial Pure Ti Induced by High Energy Shot Peening. Transactions of Nonferrous Metals So-ciety of China, 14, 215-218.
|
|
[24]
|
Liu, G., Wang, S.C., Lou, X.F., et al. (2001) Low Carbon Steel with Nanostructured Surface Layer Induced by High-Energy Shot Peening. Scripta Materialia, 44, 1791-1795.
|
|
[25]
|
Dai, K. and Shaw, L. (2008) Analysis of Fatigue Resistance Improvements via Surface Severe Plastic Deformation. International Journal of Fatigue, 30, 1398-1408. [Google Scholar] [CrossRef]
|
|
[26]
|
Kameyama, Y. and Komotori, J. (2009) Effect of Micro Ploughing during Fine Particle Peening Process on the Microstructure of Metallic Materials. Journal of Materials Processing Tech, 209, 6146-6155.
[Google Scholar] [CrossRef]
|
|
[27]
|
熊天英, 刘志文, 李智超, 等. 超音速微粒轰击金属表面纳米化新技术[J]. 材料导报, 2003, 17(3): 69-71.
|
|
[28]
|
Wang, T., Yu, J. and Dong, B. (2005) Surface Nanocrystal-lization Induced by Shot Peening and Its Effect on Corrosion Resistance of 1Cr18Ni9Ti Stainless Steel. Surface & Coatings Technology, 200, 4777-4781.
|
|
[29]
|
Wang, X.Y. and Li, D.Y. (2002) Mechanical and Electrochemical Behavior of Nanocrystalline Surface of 304 Stainless Steel. Electrochimica Acta, 47, 3939-3947. [Google Scholar] [CrossRef]
|
|
[30]
|
Sato, M., Tsuji, N., Minamino, Y., et al. (2004) Formation of Nanocrystalline Surface Layers in Various Metallic Materials by Near Surface Severe Plastic Deformation. Science & Technology of Advanced Materials, 5, 145-152.
[Google Scholar] [CrossRef]
|
|
[31]
|
王东坡, 宋宁霞, 王婷, 等. 纳米化处理超声金属表面[J]. 天津大学学报, 2007, 40(2): 228-233.
|
|
[32]
|
Prokopenko, G.I. (2007) Ultrasonic Impact Peening for the Surface Properties’ Management. Journal of Sound & Vibration, 308, 855-866.
|
|
[33]
|
Zhang, Y.S., Li, W.L., Wang, G., et al. (2012) Formation of Thick Nanocrystalline Surface Layer on Copper during Oscillating Sliding. Materials Letters, 68, 432-434. [Google Scholar] [CrossRef]
|
|
[34]
|
Li, W.L., Tao, N.R. and Lu, K. (2008) Fabrication of a Gradient Nano-Micro-Structured Surface Layer on Bulk Copper by Means of a Surface Mechanical Grinding Treatment. Scripta Materialia, 59, 546-549.
[Google Scholar] [CrossRef]
|
|
[35]
|
巴德玛, 马世宁. 机械加工法实现金属材料表面自身纳米化的研究进展[J]. 材料导报, 2006, 20(11): 92-95.
|
|
[36]
|
Chen, X.H., Lu, J., Lu, L., et al. (2005) Tensile Properties of a Nanocrystalline 316L Austenitic Stainless Steel. Scripta Materialia, 52, 1039-1044. [Google Scholar] [CrossRef]
|