胞壁酰二肽对儿童急性白血病骨髓树突状细胞功能的影响
Effect of Muramyl Dipeptide on the Immunifaction of Dendritic Cells Derived from Bone Marrow in Children with Acute Leukemia
DOI: 10.12677/ACM.2018.86085, PDF, HTML, XML, 下载: 979  浏览: 1,231 
作者: 李晓玲:临沂市人民医院儿内三科,山东 临沂;朱 政:上海中医药大学康复医学院,上海;孙立荣:青岛大学医学院附属医院小儿血液科,山东 青岛
关键词: 胞壁酰二肽树突状细胞白血病免疫功能增殖Muramyl Dipeptide Dendritic Cells Leukemia Immunifaction Proliferation
摘要: 目的:探讨胞壁酰二肽(MDP)对儿童急性白血病骨髓树突状细胞(DC)功能的影响。方法:应用Ficoll-Hypaque法分离急性白血病患儿骨髓单个核细胞,对照组:用细胞因子诱导培养DC;实验组实验组分为5个亚组,1组:与对照组等量的MNC+ MDP (10 ug/l),2~5组分别对应为:与对照组等量的MNC + 与对照组等量的细胞因子 + 不同浓度的MDP (102 ug/l,102 ug/l,103 ug/l,104 ug/l);分别诱导培养DC,第9天收获各组DC,与同种异体外周血T淋巴细胞混合反应96 h,观察淋巴细胞的增殖情况,ELISA方法检测上清液中IL-12、IFN-γ的含量;经HL-60抗原致敏后的DC与T淋巴细胞混合培养6 d后,加入HL-60细胞共同孵育12 h,LDH释放改良法检测各组细胞毒T淋巴细胞(CTL)的杀伤活性。结果:1) 混合淋巴细胞反应显示:① T细胞扩增指数:固定刺激细胞数,不同组比较,对照组与1组、2组比较均无显著性差异(p均 > 0.05);3组、4组、5组T细胞扩增指数明显高于对照组,亦明显高于1组(p均 < 0.01)。当刺激细胞数量为1 × 103至1 × 104,同组间T细胞扩增指数逐渐增加(p均 < 0.01),1 × 104与5 × 104之间T细胞扩增指数的增加无统计学意义(p > 0.05)。② T细胞分泌细胞因子:当刺激细胞数为5 × 104时,对照组与1组、2组IL-12含量的比较均无显著性差异(p > 0.05);3组、4组、5组明显高于对照组,亦明显高于1组(p均 < 0.01)。对照组与1组、2组IFN-γ含量的比较均无显著性差异(p > 0.05);3组、4组、5组明显高于对照组,亦明显高于1组(p均 < 0.01)。2) 杀瘤活性结果显示:实验各组杀伤HL-60细胞活性均较对照组显著增强(p均 < 0.01);当MDP浓度由102 ug/l递增至104 ug/l,2组、3组、4组、5组组间比较,杀伤活性逐渐增加(p均 < 0.01),以5组杀伤HL-60细胞活性最强。结论:① 当MDP诱导后的DC数量 ≥ 1 × 103时,即能促进T细胞的增殖,且有MDP浓度依赖性。② 经MDP诱导后的DC具有促进T细胞分泌的作用,与细胞因子联合作用更强。③ MDP能从儿童急性白血病骨髓中诱导出有较强的抗原刺激能力的DC,且有MDP浓度依赖性。
Abstract: Objective: To investigate the effect of Muramyl Dipeptide (MDP) on the function of dendritic cells (DC) derived from bone marrow in children with acute leukemia. Methods: The mononuclear cells were isolated from bone marrow in children with acute leukemia by the method of Ficoll-Hypaque and cultured with cytokines in the control group. The test groups contained five subgroups: used MDP (102 ug/l) alone (Group 1), cytokines combined with MDP of different concentration, which was put in 3rd day (Group 2, 10 ug/l; Group 3, 102 ug/l; Group 4, 103 ug/l; Group 5, 104 ug/l). The DCs were collected in the 9th day. The DCs of different groups were mixed with allogeneic peripheral blood T cells for 96 hours, the numbers of T cells in different groups were counted and the contents of interleukin (IL)-12, interferon-γ (IFN-γ) were tested by enzyme-linked immunosorbent assay (ELISA). The DCs of different groups and T cells (cultured with rhIL-2 + 10%FCS of RPMI1640 for 6 days) and HL-60 cells were cultured for 12 hours, cytotoxicity assay were measured by LDH release. Results: 1) Mixed lymphocyte reaction ① The stimulation index of T cell: When the number of stimulation cells was fixed, the proliferation of allogeneic lymphocytes could be strongly stimulated. There was no difference among the control group, group 1 and group 2; but the group3, group 4 and group 5 were higher than the control group and group 1 (p < 0.01). With the increasing of the number of stimulation cells from 1 × 103 to 1 × 104, the stimulation index of T cells was rising, and the group3, group 4 and group 5 were significantly higher than the control group and group 1, but there was no difference among the control group, group 1 and group 2. ② The contains of IL-12, IFN-γ: When the number of stimulation cells was 5 × 104, there was no difference among the contains of IL-12 of the control group, group 1 and group 2; the group 3, group 4 and group 5 were higher than the control group and group 1 (p < 0.01). There was no difference among the contains of IFN-γ of the control group, group 1 and group 2; the group 3, group 4 and group 5 were higher than the control group and group 1 (p < 0.01). 2) Cytotoxicity assay showed that killing activity on HL-60 cells of T cells in test groups was higher than that of the control group, and in test groups, with the increasing of the concentration of MDP from 102 ug/l to 104 ug/l, the killing activity on HL-60 cells was dramatically enhanced (p < 0.01), among which the killing activity of the group 5 was the strongest. Conclusion: ① The proliferation of T cells could be promoted when the number of DCs induced with MDP is ≥ 1 × 103, and its function has MDP concentration dependence. ② The DCs induced with MDP could promote T cells secretion, and has no difference between cytokines, but the combined application effect is more obvious. ③ MDP could induce functional DCs to be generated from bone marrow in children with acute leukemia, and its function has MDP concentration dependence.
文章引用:李晓玲, 朱政, 孙立荣. 胞壁酰二肽对儿童急性白血病骨髓树突状细胞功能的影响[J]. 临床医学进展, 2018, 8(6): 507-513. https://doi.org/10.12677/ACM.2018.86085

1. 引言

免疫细胞治疗是继化疗、骨髓移植(bone marrow transplantation, BMT)后治疗白血病的一种新方法,在治疗白血病及清除微小残留病(minimal residual disease, MRD)中被寄予很大希望。树突状细胞(dendritic cell, DC)是目前所知抗原提呈能力最强的抗原提呈细胞(antigen presenting cells, APC),在肿瘤细胞和 T淋巴细胞的相互作用中起桥梁和枢纽作用。大量的动物实验证明,DC可以诱导机体特异性免疫反应的发生,使机体得以抵御肿瘤的入侵或消灭机体现存的肿瘤 [1] [2]。胞壁酰二肽(N-乙酰胞壁酰-L-Ala-D-isoGln,即壁氨酰-L-丙氨酰-D-谷氨酰胺,Muramyl Dipeptide,简称MDP)是具有免疫增强活性的分枝杆菌细胞壁的最小有效成分 [3],对肿瘤及病原微生物具有免疫刺激及免疫治疗作用。本文就MDP在体外对儿童急性白血病骨髓来源DC的扩增和相关免疫功能进行研究。

2. 材料和方法

2.1. 材料

2.1.1. 骨髓来源

急性淋巴细胞性白血病患儿诊断和疗效均按血液病诊断及疗效标准,其中诊断标准:临床出现典型的症状体征(贫血、出血、感染、脏器浸润症状),外周血有/无幼稚细胞,骨髓原始加幼稚淋巴细胞 ≥ 30%;完全缓解的标准:1) 临床无贫血、出血、感染及白血病细胞浸润表现;2) 血象:血红蛋白 > 90 g/L,白细胞正常或减低,分类无幼稚细胞,血小板 > 100 × 109/L;3) 骨髓象:原始加幼稚淋巴细胞 < 5%,红细胞系统及巨核细胞系统正常。所有患儿均顺利完成化疗并完全缓解达6个月以上,无复发及其它并发症。住院当日无菌采集骨髓5 ml,肝素抗凝(20 U/ml)。

2.1.2. 细胞来源

HL-60细胞株购自中国科学院上海生命科学研究院。

2.1.3. 主要试剂

胞壁酰二肽(Sigma公司);重组人粒细胞–巨噬细胞集落刺激因子(recombinant human granulocyte-macrophage colony-stimulating factor, rhGM-CSF)、重组人肿瘤坏死因子-α (recombinant human tumor necrosis factor-α, rhTNF-α)、重组人白细胞介素(Recombinant human interleukin, rhIL)-2, 4 (Peprotech Asia公司);人白介素-12定量酶联检测试剂盒(IL-12)、人干扰素-γ定量酶联检测试剂盒(IFN-γ) (Jingmei Biotech公司)。

2.2. 方法

2.2.1. HL-60细胞株的培养及其全细胞抗原的制备

以含10% FCS的IMDM培养液于37℃、5% CO2、饱和湿度培养箱中孵育,每2~3天半量换液,传代培养HL-60细胞。收集对数生长期HL-60细胞,PBS洗涤(约1.0 × 106 cells/ml),放入液氮中速冻,后迅速放入37℃水浴中慢融,反复4次,所得细胞裂解液离心后,上清液稀释至1 ml,0.22 um微孔滤膜过滤,−20℃保存备用。

2.2.2. 骨髓单个核细胞(Mononuclear Cells, MNC)的分离

无菌采集抗凝骨髓5 ml,Ficoll-paque法分离MNC,调整细胞浓度为1 × 106/ml,接种于24孔培养板,于37℃,5% CO2孵箱中贴壁3~4 h。

2.2.3. 骨髓血树突状细胞(DC)的诱导

将上述细胞分组:对照组:MNC + rhGM-CSF (100 ng/ml) + IL-4 (100 ng/ml) + rhTNF-α (20 ng/ml);实验组分为5个亚组,1组:与对照组等量的MNC + MDP (10 ug/l),2~5组分别对应为:与对照组等量的MNC+与对照组等量的细胞因子+不同浓度的MDP (102 ug/l,102 ug/l,103 ug/l,104 ug/l);各组细胞均在37℃,5% CO2孵箱中培养,隔天半量换液及全量补充细胞因子与MDP。

培养过程中,倒置显微镜下每日观察细胞生长情况及形态变化。培养第9天,收取各组细胞进行实验。

2.2.4. 混合淋巴细胞反应(Mixed Lymphocyte Reaction, MLR)

无菌采集抗凝外周血5 ml,Ficoll-paque法分离获得MNC,37℃、5% CO2孵箱中贴壁3~4 h后取收集悬浮细胞,调整细胞浓度为1 × 106/ml,加入rhIL-2 (20 ng/ml),37℃,5% CO2孵箱中培养,隔天半量换液及全量补充细胞因子,第7天收获全部悬浮细胞,作为效应细胞。取培养第9天的对照组及实验组的DC作为刺激细胞。

1) 淋巴细胞增殖能力测定

刺激细胞分别以空白/孔、1 × 103/孔、5 × 103/孔、1 × 104/孔、5 × 104/孔接种于96孔培养板,分别加入1 × 105效应细胞,于37℃、5% CO2孵箱中进行混合淋巴细胞培养96 h后,加入MTT (20 ul/孔),继续孵育4 h,400×g,10 min终止培养,吸走上清,加入DMSO (150 ul/孔),酶标仪上于波长490 nm处检测A490值。

( SI ) = A49 0 / A49 0

2) 细胞因子IL-12和IFN-γ的测定

MLR 96 h后,在刺激细胞为5 × 104/孔条件下,ELISA法测定上清中IL-12和IFN-γ含量。

2.2.5. 抗白血病细胞(HL-60)细胞毒效应

1) DC致敏

同上述骨髓MNC的分离和DC的培养方法一致,但分别于第4天、第7天的DC培养体系中两次加入HL-60全细胞抗原肽(DC:HL-60 = 10:1),致敏DC。将106/ml淋巴细胞与105/ml致敏后DCHL-60细胞混合培养于96孔板中,加入rhIL-2 (20 ng/ml)共培养6 d,获得细胞毒T淋巴细胞(cytotoxic T lymphocyte, CTL),作为效应细胞。调整HL-60细胞浓度为1.0 × 105/ml作为靶细胞(效:靶 = 10:1),37℃、5% CO2孵箱中12 h后,离心收集上清液,采用LDH释放试剂盒检测LDH含量,酶标仪上于波长490 nm处测定吸光度(A)。

杀伤活性 = (实验组A − 靶细胞自然释放组A − 效应细胞自然释放组A)/(靶细胞最大释放组A − 靶细胞自然释放组A) × 100% [4] [5]

2.2.6. 统计学处理

数据用均数 ± 标准差( x ¯ ± S)表示,随机区组设计资料采用方差分析,均数间的相互比较采用t检验。

3. 结果

3.1. 对T细胞扩增的影响

当刺激细胞数一定时,不同组比较,对照组与1组、2组比较均无显著性差异(p均 > 0.05);3组、4组、5组T细胞扩增指数明显高于对照组,亦明显高于1组(p均 < 0.01)。当刺激细胞数量为1 × 103至1 × 104,同组间T细胞扩增指数逐渐增加(p均 < 0.01),1 × 104与5 × 104之间T细胞扩增指数的增加无统计学意义(p > 0.05)。见表1

3.2. 对T细胞分泌细胞因子的影响

当刺激细胞数为5 × 104时,对照组与1组IL-12含量分别为(69.78 ± 7.40) pg/ml,(67.94 ± 9.69) pg/ml,两组间比较无显著性差异(t = 0.43, p > 0.05);2组为(78.18 ± 10.72) pg/ml,与对照组及1组比较均无显著性差异(t = 1.82、2.00, p > 0.05);3组、4组、5组明显高于对照组(t = 8.31、10.63、12.16,p均 < 0.01),亦明显高于1组(t = 8.25、10.61、11.90,p均 < 0.01)。

对照组与1组IFN-γ含量分别为(75.93 ± 9.25) pg/ml,(73.17 ± 8.13) pg/ml,两组间比较无显著性差异(t = 0.63, p > 0.05);2组为(81.92 ± 10.01) pg/ml,与对照组及1组比较均无显著性差异(t = 1.24、1.92, p > 0.05);3组、4组、5组明显高于对照组(t = 9.21、12.62、15.38,p均 < 0.01),亦明显高于1组(t = 9.59、12.77、15.66,p均 < 0.01)。见图1

3.3. DC诱导的特异性抗白血病细胞毒效应

各组杀伤活性:对照组(47.54 ± 3.62)%;1组(58.43 ± 2.91)%;2组(73.58 ± 3.88)%;3组(82.12 ± 3.21)%;4组(90.53 ± 3.85)%;5组(98.90 ± 3.72)%。实验各组杀伤HL-60细胞活性均较对照组组显著增强(t = 5.24、10.97、15.98、18.19、22.69,p均 < 0.01);当MDP浓度由102 ug/l递增至104 ug/l,2组、3组、4组、5组组间比较,杀伤活性逐渐增加(2组与其余组比较:t = 3.79、7.34、10.32;3组与4、5组比较:t = 3.75、7.38;4与5组比较:t = 3.50,p均 < 0.01),以5组杀伤HL-60细胞活性最强。见图2

Table 1. Comparison of the stimulation index of T cell in different groups ( x ¯ ± S)

表1. 不同组间T细胞扩增指数比较

F1 = 40.50, F2 = 32.36, p < 0.01; ΔP < 0.01, compared among group C, B and A, t = 8.96, 9.94, 12.23; P > 0.05, compared group D with C, t = 0.16; P > 0.05, compared with the control group, t = 0.67, 0.28, 0.27, 0.36; compared with the group 1, t = 1.15, 0.50, 0.56, 0.77; P > 0.05, compared with the control group, t = 0.66, 0.18, 0.23, 0.35; P < 0.01, compared with the control group, tA = 7.37, 10.10, 13.53, tB = 4.44, 6.30, 8.54, tC = 4.77, 5.96, 9.12, tD = 4.55, 5.57, 8.54; compared with the group 1, tA = 8.49, 10.24, 13.39, tB = 4.84, 6.74, 8.13, tC = 5.53, 6.78, 10.32, tD = 5.16, 6.19, 9.35.

Figure 1. The contents of IL-12、IFN-γ by ELISA (pg/ml)

图1. T细胞分泌细胞因子(IL-12、IFN-γ)含量

Figure 2. Cytotoxicity assay by LDH release

图2. LDH法检测细胞杀伤活性

4. 讨论

MRD是白血病容易复发的主要根源,是治愈白血病的主要障碍。通过相关的技术方法增强白血病细胞的免疫原性,进而诱导机体产生肿瘤特异性的细胞免疫应答消除肿瘤细胞,可望达到治愈白血病的目的。

CD8+ CTL是有效的抗肿瘤细胞免疫的核心。但是由于肿瘤细胞抗原表达较弱、共刺激因子缺乏等原因,宿主T细胞不能有效地识别和杀伤肿瘤细胞。因而如何更好地激发机体抗肿瘤免疫成为研究的热点。

DC是免疫系统中最强的APCs,表面HLA和共刺激因子的表达增强,可释放T细胞刺激因子(主要是IL-12),T细胞增殖且特异性针对DC递呈的抗原发挥作用。在混合淋巴细胞反应中,DC不仅能原位致敏CD4+T淋巴细胞,而且在体外可有效地诱导同种异体CD8+T淋巴细胞增殖,是DC用于临床治疗恶性肿瘤的基础 [6] [7] [8]。

MDP是人工合成的分枝杆菌细胞壁中具有佐剂活性作用的最小结构单位,可有效提高IL-1、IL-6和GSF等多种细胞因子的分泌水平,对一部分肿瘤已显示出明确的免疫治疗作用 [9]。目前,极多数学者研究卡介苗激活DCs为主的APCs对肿瘤抗原的递呈能力增强进而激活CTLs针对肿瘤细胞的特异性免疫反应,以及可诱导肿瘤细胞和局部免疫细胞产生IL-1、IL-6、IL-8、IL-2、IL-12、INF-γ等细胞因子,发挥直接抗肿瘤作用、免疫细胞网络调节效应和放大免疫细胞抗肿瘤活性 [10]。推测MDP也可能具有诱导扩增DC,促进T细胞的增殖、分泌及杀瘤的功能。

本研究组既往实验证实:从儿童急性白血病骨髓中分离出MNC,分别采用GM-CSF+IL-4+TNF-α、MDP及GM-CSF + IL-4 + TNF-α + MDP诱导,均得到一定数量的典型DCs [11]。本文中MDP诱导后的DC,在1 × 103即能促进T细胞的增殖和分泌IL-12、IFN-γ,且随着MDP浓度由102 ug/l递增至104 ug/l,作用进一步增强;并且CTL细胞的杀瘤活性亦随着MDP浓度的增加逐步增强。生理情况下IL-12主要来源于DC,除有明显的抗肿瘤作用外,尚能促进T淋巴细胞增殖,诱导产生IFN-γ。IFN-γ促进DC迅速增殖,并分化为成熟的效应性CTL,发挥免疫抗肿瘤作用 [12]。以上作用在细胞因子联合MDP应用后效果更为明显。说明当MDP诱导后的DC数量 ≥ 1 × 103时,即能促进T细胞的增殖,且有MDP浓度依赖性。而且,经MDP诱导后的DC具有促进T细胞分泌的作用,与细胞因子联合作用更强。另外,MDP能从儿童急性白血病骨髓中诱导出有较强的抗原刺激能力的DC,亦具有MDP浓度依赖性。由于MDP具有免疫增强活性和高效低毒特点,对肿瘤进行免疫治疗,将可能具有较大的临床潜在应用价值。

NOTES

*并列第一作者。

#通讯作者。

参考文献

[1] Fields, R.C., Shimizu, K., Mule, J.J., et al. (1998) Murine Dendritic Cells Pulsed with Whole Tumor Lysates Mediate Potent Anti-Tumor Immune Responses in Vitro and in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 95, 9482-9487.
https://doi.org/10.1073/pnas.95.16.9482
[2] Saha, A., Chatterjee, S.K., Foon, K.A., et al. (2003) Murine Dendritic Cells Pulsed with an Anti-Idiotype Antibody Induce Antigen-Specific Protective Antitumor Immunity. Cancer Research, 63, 2844-2854.
[3] Uehori, J., Fukase, K., Akazawa, T., et al. (2005) Dendritic Cell Maturation Induced by Muramyl Dipeptide (MDP) Derivatives: Monoacylated MDP Confers TLR2/TLR4 Activation. The Journal of Immunology, 174, 7096-7103.
https://doi.org/10.4049/jimmunol.174.11.7096
[4] Weidnann, E., Brieger, J., Jahn, B., et al. (1995) Lactate Dehydrogenase Release Assay: A Reliable Nonradioactive Technique for Analysis of Cytotoxic Lymphocyte-Mediate Lytic Activity against Blasts from Acute Myelocytic Leukemia. Annals of Hematology, 70, 153-158.
https://doi.org/10.1007/BF01682036
[5] Pirious, L., Chilmonczyk, S., Genetetet, N., et al. (2000) Design of a Flow Cytometric Assay for the Determination of Natural Killer and Cytotoxic T-Lymphocyte Activity in Human and in Different Animal Species. Cytometry, 41, 289-297.
https://doi.org/10.1002/1097-0320(20001201)41:4<289::AID-CYTO7>3.0.CO;2-5
[6] Banchereau, J., Briere, F., Caux, C., et al. (2000) Immunobiology of Dendritic Cells. Annual Review of Immunology, 18, 767-811.
https://doi.org/10.1146/annurev.immunol.18.1.767
[7] Nagaraj, S., Ziske, C. and Schmidt-Wolf, I.G. (2004) Human Cytokine-Induced Killer Cells Have Enhanced in Vitro Cytolytic Activity via Non-Viral Interleukin-2 Gene Transfer. Genetic Vaccines and Therapy, 2, 12.
https://doi.org/10.1186/1479-0556-2-12
[8] Vulink, A., Radford, K.J., Melief, C., et al. (2008) Dendritic Cells in Cancer Immunotherapy. Advances in Cancer Research, 99, 363-407.
https://doi.org/10.1016/S0065-230X(07)99006-5
[9] Muhlradt, P.F. and Frisch, M. (2004) Purification and Partial Characterization of a Mycoplasma Fermentans-Derived Substance That Activates Macrophages to Release Nitric Oxide, Tumor Necrosis Factor, and Interleukin-6. Infection and Immunity, 62, 3801-3808.
[10] Cheadle, E.J., Selby, P.J. and Jackon, A.M. (2003) Mycobacterium bovis Bacillus Calmete–Guerin-Infected Dendritic Cells Potently Activate Autologous T Cells via a B7 and Interleukin-12-Dependent Mechanism. Immunology, 108, 79-88.
https://doi.org/10.1046/j.1365-2567.2003.01543.x
[11] 李晓玲, 孙立荣. 胞壁酰二肽对儿童急性白血病骨髓树突状细胞体外扩增的影响[J]. 中国实验血液学杂志, 2010, 18(4): 963-966.
[12] 曲春枫, 顾培娣, 鞠吉雨, 等. IL-12 基因转染的人树突状细胞加强细胞免疫反应的体外研究[J]. 中国免疫学杂志, 2000(12): 638-640, 647.