自闭症者对音乐和言语情绪的加工
The Processing of Music and Speech Emotion in Individuals with Autism
DOI: 10.12677/AP.2018.89146, PDF, HTML, XML, 下载: 1,014  浏览: 5,472  科研立项经费支持
作者: 杨 振:上海师范大学音乐学院,上海;杜 梦:上海师范大学教育学院,上海
关键词: 自闭症音乐情绪言语情绪情绪知觉情绪反应Autism Music Emotion Speech Emotion Emotion Perception Emotion Response
摘要: 自闭症是以社会交往和沟通障碍、重复刻板行为以及狭窄兴趣为主要症状的一种神经发育障碍,其核心障碍是情绪交流障碍。本研究探究自闭症者的音乐与言语情绪加工。研究结果表明,在音乐情绪加工方面,自闭症者不仅对音乐基本情绪和复合情绪的知觉是正常的,他们对音乐情绪的主观体验和生理反应也是正常的。然而,在言语情绪加工方面,自闭症者不仅对言语复合情绪的识别具有障碍,而且对言语基本情绪的表达也具有障碍。本研究结果不仅可以推进音乐与言语的对比研究,而且也为自闭症者言语情绪加工障碍的治疗提供借鉴。
Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in social communication and social interaction, and restricted, repetitive patterns of behavior, interests, or activities. Emotion communication disorder is considered a core deficit in ASD. It has been reported that individuals with autism show normal perception of basic and complex emotions in music, and subjective experience and physiological responses to music. However, they perform worse than neurotypical individuals in recognizing complex emotions in speech, as well as in expressing basic emotions in speech. The present study not only helps us to understand the relationship between music and speech, but also provides some implications for the treatment of speech emotion communication disorder in autistics.
文章引用:杨振, 杜梦 (2018). 自闭症者对音乐和言语情绪的加工. 心理学进展, 8(9), 1242-1251. https://doi.org/10.12677/AP.2018.89146

1. 引言

自闭症谱系障碍(autism spectrum disorder,简称自闭症)是以社会交往和沟通障碍、重复刻板行为以及狭窄兴趣为主要症状的一种严重的神经发育障碍(American Psychiatric Association, 2013)。据统计,在美国,自闭症患病率稳定在2.47% (Xu, Strathearn, Liu, & Bao, 2018);而在中国,自闭症患病率为1.19% (Sun et al., 2015),据此可估算,中国自闭症患者超过1654万。由于研究滞后、治疗效果受限,许多自闭症者错过了最佳的干预期(万璇,董世华,蒋存梅,2014),不仅给家长造成巨大的精神和经济压力,也给学校和社会带来沉重负担。自闭症引起了医学界、心理学界和教育界的高度关注,已经成为世界公认的难题之一。

自闭症者的异常突出表现在社会交往和重复行为方面。这些异常都与情绪交流障碍有关。情绪交流障碍由此被认为是自闭症的核心障碍(Gaigg, 2012; Hobson, 1986)。在日常生活中,自闭症者无法对他人的喜怒哀乐做出反应,无法正确表达自己的情绪和需求(Scambler, Hepburn, Rutherford, Wehner, & Rogers, 2007; Snow, Hertzig, & Shapiro, 1987);在日常活动程序被改变的情况下,他们会表现出不愉快和焦虑情绪,甚至出现反抗行为。研究发现,这种言语情绪障碍也影响到自闭症者的社交行为(Berkovits, Eisenhower, & Blacher, 2017; Samson et al., 2014)。

尽管自闭症者在言语情绪加工方面可能存在障碍,但是他们拥有较强的音乐能力,主要体现在音高知觉和记忆方面(如Jiang, Liu, Wan, & Jiang, 2015; Stanutz, Wapnick, & Burack, 2014; 万璇等,2014)。众所周知,音乐与语言都是人类社会交流的媒介(Patel, 2008)。由于音乐和言语使用一些相同的声学线索(如,音高、强度和速度) (Coutinho & Dibben, 2013; Ilie & Thompson, 2006, 2011; Juslin & Laukka, 2003),研究者推测二者可能共享特定的认知资源和神经机制(Patel, 2008, 2012, 2013)。因此,音乐干预成为自闭症者言语情绪康复的一种手段。但是,音乐干预能否改善自闭症者的言语情绪加工?其实证依据何在?本文探究自闭症者对音乐和言语情绪的加工,这不仅可以厘清二者是否共享认知和神经资源,而且也将为自闭症者言语情绪障碍的康复实践提供实证依据。

2. 自闭症者对音乐情绪的加工

音乐是一门情绪(或情感)的艺术。从音乐角度来说,音乐能够表达和诱发情绪;相应地,从听者角度来说,人们能够对音乐情绪进行知觉和反应(Schubert, 2013)。

2.1. 自闭症者对音乐情绪的知觉

许多研究考察了自闭症者对音乐情绪的知觉。按照离散情绪模型,情绪可以分为基本情绪(包括积极情绪和消极情绪)与复合情绪。就基本情绪来说,研究者发现,自闭症者能够识别音乐表现的基本情绪。Heaton等人(1999)最先考察了自闭症者对音乐情绪的知觉。在该研究中,14名自闭症儿童和年龄、性别、IQ匹配的14名正常儿童聆听表现快乐和悲伤情绪的钢琴音乐,听完每首音乐后,他们需要将其与快乐或悲伤的面部表情简图进行配对。结果发现,自闭症儿童对快乐和悲伤音乐情绪的识别率均高于随机水平,并且与正常儿童的成绩没有差异。后续研究(Bruyn, Moelants, & Leman, 2012; Järvinen et al., 2016; Quintin, Bhatara, Poissant, Fombonne, & Levitin, 2011; Whipple, Gfeller, Driscoll, Oleson, & McGregor, 2015)验证了“自闭症者对快乐和悲伤音乐情绪识别正常”的结果。除此之外,无论是自闭症儿童(Heaton, Allen, Williams, Cummins, & Happé, 2008; Järvinen et al., 2016; Whipple et al., 2015)和青少年(Quintin et al., 2011)还是成人(Bruyn et al., 2012),他们对音乐所表现的恐惧、愤怒、厌恶等基本情绪的识别也是正常的。就复合情绪来说,研究表明,自闭症儿童、青少年和成人与正常人一样都能够识别平静(Quintin et al., 2011)、温柔(Bruyn et al., 2012; Heaton et al., 2008)、胜利和沉思(Heaton et al., 2008)等音乐情绪。例如,在Quintin等人(2011)的研究中,26名11~19岁的高功能自闭症者(IQ > 70)和年龄、操作IQ、听觉工作记忆、音乐训练年限及乐器演奏数量匹配的正常人聆听5首平静音乐,在音乐开始不久后,电脑屏幕出现4个面孔简笔图及相应的情绪标签,他们需要从中选出符合音乐情绪的一个图片,并且判断音乐表现所选情绪的强度及其判断的信心程度。结果发现,自闭症者的成绩与正常人一样好。但是,也有研究发现,自闭症者对快乐歌曲的愉悦情绪评定均与正常人没有差异,而对悲伤歌曲的不愉悦情绪评定均低于正常人(Kopec, Hillier, & Frye, 2014)。显然,这种矛盾的结果可能是由于歌词内容的影响。脑成像研究结果表明,与悲伤音乐相比,快乐音乐使自闭症者大脑左侧额中回与额下回的激活比正常人强(Gebauer, Skewes, Westphael, Heaton, & Vuust, 2014)。

除了离散情绪模型,情绪也可以按照维度进行划分。研究者使用最广泛的一种维度模型就是Russell (1980)提出的二维情绪模型,即情绪由愉悦度(valence)和唤醒度(arousal)组成。Gebauer等人(2014)考察了19名高功能自闭症者和20名性别、年龄、音乐能力、IQ及言语IQ相匹配的正常人对音乐情绪的知觉。刺激是被试不熟悉的20首快乐与20首悲伤的器乐音乐以及20首中性音乐(半音音阶),时长12 s。在聆听每首音乐后,被试有6 s的时间评定音乐情绪的愉快度。行为结果表明,自闭症者对快乐、悲伤和中性音乐的愉悦度评定与正常人都没有显著差异。但是,Khalfa和Peretz (2007)发现,高功能自闭症者对7 s长的快乐和悲伤音乐的愉悦度评定低于正常人。同时,自闭症者在2种情绪上的皮肤电振幅没有明显差异,且高于控制组。这表明,自闭症者对音乐愉悦度不敏感。这种矛盾可能是由于刺激长度的差异造成的。因为自闭症者可能需要较长的时间才能对音乐情绪做出判断。就唤醒度而言,Bhatara等人(2010)以11~20岁的高功能自闭症者与年龄、操作IQ、听觉工作记忆、音乐训练年限和乐器演奏数量匹配的正常人为被试探讨他们对音乐情绪的知觉。刺激是4首肖邦的《夜曲》,大调和小调各2首,时长约20 s。研究者通过软件操纵了音乐2个声学参数(时间和振幅)的变化,形成4个演奏版本:正常演奏版本、机械演奏版本、50%变化演奏版本、随机变化演奏版本。因此,共有16个音乐片段。在听完每首音乐后,被试的任务是评定音乐表现情绪的强度(即唤醒度),而不是评定演奏有多好或者音乐表现某种情绪以及自己体验到的情绪。结果显示,与正常人不同,自闭症者对所有音乐的唤醒度的评定无明显差异。这说明,自闭症者对音乐唤醒度不太敏感。然而,Khalfa和Peretz的研究揭示,自闭症者对快乐和悲伤音乐的唤醒度评定与正常人一样。这种不一致的结果可以由音乐刺激的差异解释。Bhatara等人通过操纵声学参数形成不同的音乐刺激,这种操纵很可能引起不同刺激之间的唤醒度差异较小,从而导致自闭症被试难以区分这种差异;而Khalfa和Peretz使用真实的音乐刺激,不同刺激之间的唤醒度差异较大,因此自闭症被试能够区分差异。

由上可见,从离散情绪模型来看,自闭症者在音乐情绪知觉方面没有障碍。但是,从二维情绪模型来看,自闭症者对音乐情绪的知觉是否存在异常的问题仍然悬而未决,因此需要更多的研究进行探索。

2.2. 自闭症者对音乐情绪的反应

情绪反应不仅包括主观体验,还包括外部表情和生理反应。已有研究集中探究自闭症者对音乐情绪的主观体验和生理反应。为了了解自闭症儿童对音乐情绪的主观体验,Bhatara,Quintin,Fombonne和Levitin (2013)对高功能自闭症儿童的父母进行了问卷调查,要求父母对孩子的音乐行为、音乐兴趣、音乐能力、音乐训练经验、音乐情绪反应进行评估。调查结果发现,即使自闭症儿童在言语IQ、操作IQ、音乐训练年限和乐器演奏数量方面低于正常儿童,但是他们无论是对快乐还是悲伤音乐的情绪反应与正常儿童都没有差别。在Stephenson,Quintin和South (2016)的实验研究中,他们考察了高功能自闭症儿童(8~12岁)和青少年(15~18岁)对快乐、悲伤和恐惧音乐所诱发的主观情绪体验。被试听完每首音乐后,需要判断音乐使他们产生的情绪体验类型及其强度。结果显示,自闭症儿童和青少年体验到与音乐相应的情绪及其情绪强度的能力均与控制组一样。对于自闭症成人来说,通过早期音乐经验问卷调查与半结构化的访谈,Allen,Hill和Heaton (2009)发现,高功能自闭症被试对古典音乐或流行音乐比较感兴趣,大多数人使用音乐的主要目的是调节情绪;他们对音乐(无论是快乐还是悲伤音乐)的主观体验与正常人一样。实验研究也表明,高功能自闭症成人对快乐、悲伤和恐惧音乐所诱发的主观情绪体验与正常人没有明显差异(Allen, Davis, & Hill, 2013; Caria, Venuti, & de Falco, 2011)。然而,Kopec等人(2014)的实验结果与之矛盾。在该研究中,24名自闭症成人被试首先完成多伦多述情障碍(alexithymia)量表,然后聆听8首分别表现高唤醒-高愉悦、高唤醒-低愉悦、低唤醒-高愉悦、低唤醒-低愉悦情绪的歌曲片段(时长60 s)。被试聆听每首歌曲后,需要在1分钟内对其放松、愉快、抑郁、悲伤、兴奋、快乐、愤怒和焦虑程度进行等级评定。研究者发现,在排除了述情障碍的影响后,自闭症被试对高愉悦歌曲诱发的愉悦情绪体验强度与正常人均没有明显差异,但是不愉悦歌曲诱发的不愉悦情绪体验强度低于正常人。这说明,歌词内容对不愉悦情绪的主观体验产生了影响。

如果自闭症者在音乐情绪的主观体验方面是正常的,那么他们在其生理反应方面是否也是正常的?为了探究这个问题,Allen等人(2013)招募了23名高功能自闭症成人与24名年龄、性别、语言理解能力、I类述情障碍匹配的控制组。刺激是表现快乐、悲伤与恐惧情绪的音乐,时长30 s。研究者要求被试集中精力聆听音乐,并记录其皮肤电反应。结果发现,自闭症者对所有音乐情绪的皮肤电反应无异于常人。Stephenson等人(2016)考察了高功能自闭症儿童和青少年对快乐、悲伤和恐惧音乐诱发的生理反应。首先,被试完成一项花卉图片识别任务,时间约5分钟,同时采集皮肤电反应作为基线。然后,开始正式实验,被试聆听音乐时,皮肤电反应在整个实验过程一直记录着。结果显示,与控制组相比,自闭症儿童和青少年在所有音乐上的皮肤电反应较低。这说明,自闭症者对音乐情绪的生理反应具有异常。但是,这种异常是由于述情障碍引起的。因为有研究表明(Allen et al., 2013),尽管高功能自闭症者对音乐情绪的皮肤电反应异于常人,但是在控制了述情障碍的影响后,组间差异就不再显著了。Caria等人(2011)使用fMRI技术考察了阿斯伯格症者和控制组对音乐情绪的反应。被试被动聆听高兴、悲伤和中性的音乐各10首,不作任何反应。研究者发现,阿斯伯格症者能够像正常人一样激活情绪加工和与奖赏有关的脑区,包括右前脑岛、颞上回前部、纹状体、尾状核与壳核,但是与情绪状态意识有关的左前脑岛激活较弱。研究结果也显示,与阿斯伯格症者相比,控制组被试在被动聆听快乐音乐时,双侧小脑、右侧中央前回和辅助运动区激活较强;在被动聆听悲伤音乐时,右侧缘上回、中央前回和颞下回以及左侧额下回、小脑和辅助运动区激活较强。

以上研究表明,自闭症者对音乐情绪的主观体验和生理反应都是正常的。但是,仅有的一篇研究表明他们对音乐情绪反应的部分大脑活动可能比正常人较弱。未来研究需要进一步对该问题进行检验。

3. 自闭症者对言语情绪的加工

众所周知,言语也能够表达和诱发情绪。与音乐情绪加工类似,听者对言语情绪的加工涉及对他人言语情绪的知觉与反应。

3.1. 自闭症者对言语情绪的知觉

已有研究对自闭症者言语情绪知觉的探讨也主要是从基本情绪与复合情绪角度入手。就基本情绪知觉而言,研究结果并不一致。一些研究表明,自闭症儿童在匹配快乐、悲伤、愤怒和惊奇言语情绪韵律与面孔表情时的正确率均低于控制组(Chiew & Kjelgaard, 2017; Matsuda & Yamamoto, 2015; Van Lancker, Cornelius, & Kreiman, 1989)。但是,其他一些研究表明,自闭症儿童能够识别言语表达的快乐、悲伤、愤怒、恐惧、厌恶、惊奇等基本情绪(Fridenson-Hayo et al., 2016; Grossman, Bemis, Plesa Skwerer, & Tager-Flusberg, 2010; Matsumoto et al., 2016)。这种不一致可能源于个体差异。的确,有研究表明,当自闭症儿童与控制组在非言语心理年龄上进行匹配时,自闭症组在匹配快乐、悲伤、愤怒和恐惧言语情绪韵律与面孔表情上的成绩较差;但是,当他们与控制组在言语心理年龄上进行匹配时,其成绩正常(Ozonoff, Pennington, & Rogers, 1990; Taylor, Maybery, Grayndler, & Whitehouse, 2015)。对于自闭症成人来说,研究结果也存在矛盾。一些研究者发现,自闭症者难以识别言语表达的快乐、愤怒、恐惧和厌恶情绪(Globerson, Amir, Kishon-Rabin, & Golan, 2015; Heaton et al., 2012; Philip et al., 2010),然而其他一些研究者发现,自闭症者对言语基本情绪的识别是正常的(Ketelaars, In’t Velt, Mol, Swaab, & van Rijn, 2016; Khalfa & Peretz, 2007; Martzoukou, Papadopoulou, & Kosmidis, 2017)。这种矛盾可能由于任务难度的差异造成的。在那些自闭症者言语情绪具有异常的研究中,被试的任务是从5个或6个选项中选择一个正确选项,而在那些自闭症者言语情绪正常的研究中,选项只有4个,因此任务相对简单一点。的确,有研究发现,当选项为2个时,自闭症者的成绩与正常人一样好;当选项不低于4个时,自闭症者的成绩比正常人差(Rosenblau, Kliemann, Dziobek, & Heekeren, 2017)。同样地,行为研究结果的不一致也体现在ERP研究(Fan & Cheng, 2014; Lerner, McPartland, & Morris, 2013)和fMRI研究(Doyle-Thomas, Goldberg, Szatmari, & Hall, 2013; Eigsti, Schuh, Mencl, Schultz, & Paul, 2012)中。这种矛盾可能缘于刺激本身。已有研究所使用的刺激是真实自然的,在这种情况下,刺激表现的情绪既包含由声学线索变化产生的情绪,也包含由句法结构变化所产生的情绪(Tillmann & Bigand, 2015)。因此,不一致的研究结果可能是由于自闭症个体所依赖的线索差异造成的。

就复合情绪知觉来说,研究者关注较少。在Golan,Sinai-Gavrilov和Baron-Cohen (2015)的研究中,30名高功能自闭症儿童和25名在性别、年龄、言语IQ及操作IQ上相匹配的控制组儿童聆听表达愉快、无聊、失望、尴尬、嫉妒、爱、紧张不安、犹豫不决和不友好这9种复合情绪的言语韵律,然后从4个情绪标签中选出一个韵律表达的情绪标签。结果发现,除了爱与犹豫不决之外,自闭症组在识别所有情绪上的正确率均低于控制组,表明自闭症儿童对多种言语复合情绪的知觉存在障碍。此外,该研究还发现,自闭症儿童症状的严重程度与情绪识别成绩呈现负相关,这意味着,自闭症症状越严重,自闭症儿童越难以识别言语情绪。Fridenson-Hayo等人(2016)也进行了类似的研究,他们要求在性别、年龄和IQ上匹配的55名高功能自闭症儿童和58名控制组儿童聆听一些时长1~3 s的中性句子,这些句子以兴趣、无聊、兴奋、担心、失望、沮丧、骄傲、羞愧、善良、不友好、戏谑和受伤的情绪朗读出来,然后从4个情绪标签中选出正确的一个标签。结果发现,自闭症组识别这些复杂情绪的成绩显著低于控制组。这可能是因为,与基本情绪相比,复合情绪种类更多,自闭症被试在进行匹配时难度更大。

由上可见,自闭症者对言语基本情绪的知觉是否存在异常尚未得出一致的结论,但是他们对言语复合情绪的识别是异常的。未来的研究应该采用更严格的变量控制进行研究。

3.2. 自闭症者对言语情绪的反应

言语情绪反应既包含对他人言语情绪的体验,也包含自己的言语情绪表达。已有研究主要涉及自闭症者的言语情绪表达。就基本情绪而言,研究结果显示,自闭症者在表达快乐、悲伤和愤怒句子时具有障碍(Hubbard & Trauner, 2007; 陈怡如,刘惠美,2010)。例如,Hubbard和Trauner要求18名6~21岁的自闭症组(自闭症者和阿斯伯格症者各9名)和10名控制组被试完成2个任务:在句子复述任务中,被试聆听以快乐、悲伤和愤怒情绪说出的语义中性的句子,然后复述句子;在故事补全任务中,被试聆听未完成的表达快乐、悲伤和愤怒情绪的故事,并用符合故事情绪的一句话来补全故事。研究者发现,自闭症组在2个情绪表达任务上的成绩分别为59.1%和55.0%,显著低于控制组的76.7%和86.7%。这种异常也体现在他们无法把握情绪的声学特征上,即自闭症组在复述情绪句子时的音高范围比控制组大。Hubbard等人(2017)对男性自闭症成人的研究同样发现了这种声学特征,并且他们在表达基本言语情绪时还表现出声音强度较高、时间较长的特点。然而,陈怡如和刘惠美对8~12岁高功能自闭症儿童的研究发现,无论是自发读故事还是模仿示范语音,自闭症组在表达3种情绪时的音高范围比正常儿童小,而声音强度与时长却没有差异。这可能是由于语言差异造成的。陈怡如和刘惠美的研究使用的语言是中文,而Hubbard等人使用的语言是英文。这种差异可能对结果产生不同的影响。

就复合情绪而言,研究者通常使用儿童韵律系统分析元素(Profiling Elements of Prosodic Systems in Children, PEPS-C)中的情感表达任务来测量高功能自闭症者用语调变化表达情绪的能力(Peppé & McCann, 2003)。具体来说,该任务会给被试呈现一些食物图片,如果被试喜欢某种食物,就以喜欢的口吻说出该食物的名字,并选择快乐的表情;如果不喜欢,则以不喜欢的口吻说出食物名字,并选择悲伤的表情。Peppé等人(2006)最先使用PEPS-C考察了自闭症儿童的言语情绪表达能力。被试是31名6~13岁的高功能自闭症儿童和72名在性别、言语心理年龄以及社会经济地位上匹配的正常儿童。结果发现,自闭症儿童在以喜欢与不喜欢的口吻表达食物名字时,其正确率均低于正常人儿童。后续研究也表明,高功能自闭症儿童在言语情绪表达方面具有缺陷(McCann, Peppe, Gibbon, O’Hare, & Rutherford, 2007; Peppé, McCann, Gibbon, O’Hare, & Rutherford, 2007)。然而,Diehl和Paul (2013)对8~16岁自闭症儿童和青少年进行的研究却得到相反的结果。该研究发现,无论是表达喜欢还是不喜欢的情绪,自闭症组被试的正确率(约71.9%)与控制组(约81.3%)均无明显差异;其言语的声学特征(包括平均音高、音高范围、发音强度和发音时长)也不具有显著差异。类似地,Paul等人(2005)也发现,自闭症青少年能够以兴奋与平静的口吻读出所给的句子。这种矛盾结果可能主要源于年龄差异:在McCann等人和Peppé等人研究中,被试的平均年龄较小,而在Diehl和Paul以及Paul等人研究中,被试平均年龄较大。随着年龄和语言知识的增长,自闭症者的言语情绪障碍有可能会好转。就自闭症成人而言,Hesling等人(2010)的研究表明,男性自闭症者在情感表达任务上的正确率约为30%,显著低于正常人的95%。

综上所述,自闭症者对言语基本情绪的表达存在异常,而对于复合情绪的表达是否存在异常还处于争论之中。目前关于自闭症者言语情绪反应的研究还比较匮乏,未来应该加强这方面的研究,尤其是言语情绪体验方面的研究。

4. 研究展望

尽管已有研究在探索自闭症者对音乐情绪和言语情绪的加工方面取得了一定的进展,为我们理解其音乐和言语加工能力,进而寻找有效的训练或治疗方法提供了基础。但是,还有一些问题值得探究。

首先,未来研究应该严格筛选被试。已有许多研究在被试筛选方面不甚严格,尚未完全排除情绪障碍的影响,如述情障碍、焦虑症和抑郁症。已有研究表明,约有50%~65%、39%和32%的自闭症者分别患有不同程度的述情障碍(Berthoz & Hill, 2005; Milosavljevic et al., 2016)、焦虑症和抑郁症(Mazefsky, Conner, & Oswald, 2010)。以述情障碍为例,患有该障碍的个体往往难以描述和表达自身的情绪,对情绪变化的领悟能力差(Bagby, Parker, & Taylor, 1994),这会导致他们在识别和表达情绪时发生困难。因此,今后的研究需要排除或控制这些情绪障碍。

其次,未来研究应该考虑任务类型与难度。由于不同的研究往往采用不同的任务范式,如要求被试对相应情绪进行等级评定或从若干情绪选项中选择一种情绪进行匹配,2种任务的精确度不同、难度不同,势必会造成研究结果的差异。因此,未来研究需要加强这方面的研究。

最后,目前关于自闭症者音乐和言语情绪加工的脑成像研究还比较匮乏。这使我们难以理解自闭症者在加工音乐和言语情绪中存在优势或障碍的神经机制原因,进而阻碍我们寻找合理有效的训练或治疗方法以提高自闭症者的认知和社会交往能力。

基金项目

国家级大学生创新创业训练计划项目(201810270030)。

参考文献

[1] 陈怡如, 刘惠美(2010). 高功能自闭症儿童情绪语调的表达. 特殊教育研究学刊, 35(2), 55-79.
[2] 万璇, 董世华, 蒋存梅(2014). 自闭症者对音乐和言语音高的加工. 心理科学, 37(1), 217-224.
[3] Allen, R., Davis, R., & Hill, E. (2013). The Effects of Autism and Alexithymia on Physiological and Verbal Responsiveness to Music. Journal of Autism and Developmental Disorders, 43, 432-444.
https://doi.org/10.1007/s10803-012-1587-8
[4] Allen, R., Hill, E., & Heaton, P. (2009). “Hath Charms to Soothe …”: An Exploratory Study of How High-Functioning Adults with ASD Experience Music. Autism, 13, 21-41.
https://doi.org/10.1177/1362361307098511
[5] American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington DC: American Psychiatric Association.
https://doi.org/10.1176/appi.books.9780890425596
[6] Bagby, R. M., Parker, J. D. A., & Taylor, G. J. (1994). The twenty-item Toronto Alexithymia Scale—I. Item Selection and Cross-Validation of the Factor Structure. Journal of Psychosomatic Research, 38, 23-32.
https://doi.org/10.1016/0022-3999(94)90005-1
[7] Berkovits, L., Eisenhower, A., & Blacher, J. (2017). Emotion Regulation in Young Children with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 47, 68-79.
https://doi.org/10.1007/s10803-016-2922-2
[8] Berthoz, S., & Hill, E. L. (2005). The Validity of Using Self-Reports to Assess Emotion Regulation Abilities in Adults with Autism Spectrum Disorder. European Psychiatry, 20, 291-298.
https://doi.org/10.1016/j.eurpsy.2004.06.013
[9] Bhatara, A., Quintin, E.-M., Fombonne, E., & Levitin, D. J. (2013). Early Sensitivity to Sound and Musical Preferences and Enjoyment in Adolescents with Autism Spectrum Disorders. Psychomusicology: Music, Mind, and Brain, 23, 100-108.
https://doi.org/10.1037/a0033754
[10] Bhatara, A., Quintin, E.-M., Levy, B., Bellugi, U., Fombonne, E., & Levitin, D. J. (2010). Perception of Emotion in Musical Performance in Adolescents with Autism Spectrum Disorders. Autism Research, 3, 214-225.
https://doi.org/10.1002/aur.147
[11] Bruyn, L. D., Moelants, D., & Leman, M. (2012). An Embodied Approach to Testing Musical Empathy in Participants with an Autism Spectrum Disorder. Music and Medicine, 4, 28-36.
https://doi.org/10.1177/1943862111415116
[12] Caria, A., Venuti, P., & de Falco, S. (2011). Functional and Dysfunctional Brain Circuits Underlying Emotional Processing of Music in Autism Spectrum Disorders. Cerebral Cortex, 21, 2838-2849.
https://doi.org/10.1093/cercor/bhr084
[13] Chiew, J., & Kjelgaard, M. (2017). The Perception of Affective Prosody in Children with Autism Spectrum Disorders and Typical Peers. Clinical Archives of Communication Disorders, 2, 128-141.
https://doi.org/10.21849/cacd.2017.00157
[14] Coutinho, E., & Dibben, N. (2013). Psychoacoustic Cues to Emotion in Speech Prosody and Music. Cognition and Emotion, 27, 658-684.
https://doi.org/10.1080/02699931.2012.732559
[15] Diehl, J. J., & Paul, R. (2013). Acoustic and Perceptual Measurements of Prosody Production on the Profiling Elements of Prosodic Systems in Children by Children with Autism Spectrum Disorders. Applied Psycholinguistics, 34, 135-161.
https://doi.org/10.1017/S0142716411000646
[16] Doyle-Thomas, K., Goldberg, J., Szatmari, P., & Hall, G. (2013). Neurofunctional Underpinnings of Audiovisual Emotion Processing in Teens with Autism Spectrum Disorders. Frontiers in Psychiatry, 4, 48.
https://doi.org/10.3389/fpsyt.2013.00048
[17] Eigsti, I.-M., Schuh, J., Mencl, E., Schultz, R. T., & Paul, R. (2012). The Neural Underpinnings of Prosody in Autism. Child Neuropsychology, 18, 600-617.
https://doi.org/10.1080/09297049.2011.639757
[18] Fan, Y.-T., & Cheng, Y. (2014). Atypical Mismatch Negativity in Response to Emotional Voices in People with Autism Spectrum Conditions. PLoS ONE, 9, e102471.
https://doi.org/10.1371/journal.pone.0102471
[19] Fridenson-Hayo, S., Berggren, S., Lassalle, A., Tal, S., Pigat, D., Bolte, S., Golan, O. et al. (2016). Basic and Complex Emotion Recognition in Children with Autism: Cross-Cultural Findings. Molecular Autism, 7, 52.
https://doi.org/10.1186/s13229-016-0113-9
[20] Gaigg, S. (2012). The Interplay between Emotion and Cognition in Autism Spectrum Disorder: Implications for Developmental Theory. Frontiers in Integrative Neuroscience, 6, 113-152.
https://doi.org/10.3389/fnint.2012.00113
[21] Gebauer, L., Skewes, J., Westphael, G., Heaton, P., & Vuust, P. (2014). Intact Brain Processing of Musical Emotions in Autism Spectrum Disorder, But More Cognitive Load and Arousal in Happy vs. Sad Music. Frontiers in Neuroscience, 8, 192.
https://doi.org/10.3389/fnins.2014.00192
[22] Globerson, E., Amir, N., Kishon-Rabin, L., & Golan, O. (2015). Prosody Recognition in Adults with High-Functioning Autism Spectrum Disorders: From Psychoacoustics to Cognition. Autism Research, 8, 153-163.
https://doi.org/10.1002/aur.1432
[23] Golan, O., Sinai-Gavrilov, Y., & Baron-Cohen, S. (2015). The Cambridge Mindreading Face-Voice Battery for Children (CAM-C): Complex Emotion Recognition in Children with and without Autism Spectrum Conditions. Molecular Autism, 6, 22.
https://doi.org/10.1186/s13229-015-0018-z
[24] Grossman, R. B., Bemis, R. H., Plesa Skwerer, D., & Tager-Flusberg, H. (2010). Lexical and Affective Prosody in Children with High-Functioning Autism. Journal of Speech, Language, and Hearing Research, 53, 778-793.
https://doi.org/10.1044/1092-4388(2009/08-0127)
[25] Heaton, P., Allen, R., Williams, K., Cummins, O., & Happé, F. (2008). Do Social and Cognitive Deficits Curtail Musical Understanding? Evidence from Autism and Down Syndrome. British Journal of Developmental Psychology, 26, 171-182.
https://doi.org/10.1348/026151007X206776
[26] Heaton, P., Hermelin, B., & Pring, L. (1999). Can Children with Autistic Spectrum Disorders Perceive Affect in Music? An Experimental Investigation. Psychological Medicine, 29, 1405-1410.
https://doi.org/10.1017/S0033291799001221
[27] Heaton, P., Reichenbacher, L., Sauter, D., Allen, R., Scott, S., & Hill, E. (2012). Measuring the Effects of Alexithymia on Perception of Emotional Vocalizations in Autistic Spectrum Disorder and Typical Development. Psychological Medicine, 42, 2453-2459.
https://doi.org/10.1017/S0033291712000621
[28] Hesling, I., Dilharreguy, B., Peppe, S., Amirault, M., Bouvard, M., & Allard, M. (2010). The Integration of Prosodic Speech in High Functioning Autism: A Preliminary fMRI Study. PLoS ONE, 5, e11571.
https://doi.org/10.1371/journal.pone.0011571
[29] Hobson, R. P. (1986). The Autistic Child’s Appraisal of Expressions of Emotion: A Further Study. The Journal of Child Psychology and Psychiatry, 27, 671-680.
https://doi.org/10.1111/j.1469-7610.1986.tb00191.x
[30] Hubbard, D. J., Faso, D. J., Assmann, P. F., & Sasson, N. J. (2017). Production and Perception of Emotional Prosody by Adults with Autism Spectrum Disorder. Autism Research, 10, 1991-2001.
https://doi.org/10.1002/aur.1847
[31] Hubbard, K., & Trauner, D. A. (2007). Intonation and Emotion in Autistic Spectrum Disorders. Journal of Psycholinguistic Research, 36, 159-173.
https://doi.org/10.1007/s10936-006-9037-4
[32] Ilie, G., & Thompson, W. F. (2006). A Comparison of Acoustic Cues in Music and Speech for Three Dimensions of Affect. Music Perception, 23, 319-330.
https://doi.org/10.1525/mp.2006.23.4.319
[33] Ilie, G., & Thompson, W. F. (2011). Experiential and Cognitive Changes Following Seven Minutes Exposure to Music and Speech. Music Perception, 28, 247-264.
https://doi.org/10.1525/mp.2011.28.3.247
[34] Järvinen, A., Ng, R., Crivelli, D., Neumann, D., Arnold, A. J., Woo-VonHoogenstyn, N., Bellugi, U. et al. (2016). Social Functioning and Autonomic Nervous System Sensitivity across Vocal and Musical Emotion in Williams Syndrome and Autism Spectrum Disorder. Developmental Psychobiology, 58, 17-26.
https://doi.org/10.1002/dev.21335
[35] Jiang, J., Liu, F., Wan, X., & Jiang, C. (2015). Perception of Melodic Contour and Intonation in Autism Spectrum Disorder: Evidence from Mandarin Speakers. Journal of Autism and Developmental Disorders, 45, 2067-2075.
https://doi.org/10.1007/s10803-015-2370-4
[36] Juslin, P. N., & Laukka, P. (2003). Communication of Emotions in Vocal Expression and Music Performance: Different Channels, Same Code? Psychological Bulletin, 129, 770-814.
https://doi.org/10.1037/0033-2909.129.5.770
[37] Ketelaars, M. P., In’t Velt, A., Mol, A., Swaab, H., & van Rijn, S. (2016). Emotion Recognition and Alexithymia in High Functioning Females with Autism Spectrum Disorder. Research in Autism Spectrum Disorders, 21, 51-60.
https://doi.org/10.1016/j.rasd.2015.09.006
[38] Khalfa, S., & Peretz, I. (2007). Atypical Emotional Judgments and Skin Conductance Responses to Music and Language in Autism. In L. B. Zhao (Ed.), Autism Research Advances (pp. 101-119). New York, NY: Nova Science Publishers.
[39] Kopec, J., Hillier, A., & Frye, A. (2014). The Valency of Music Has Different Effects on the Emotional Responses of Those with Autism Spectrum Disorders and a Comparison Group. Music Perception, 31, 436-443.
https://doi.org/10.1525/mp.2014.31.5.436
[40] Lerner, M. D., McPartland, J. C., & Morris, J. P. (2013). Multimodal Emotion Processing in Autism Spectrum Disorders: An Event-Related Potential Study. Developmental Cognitive Neuroscience, 3, 11-21.
https://doi.org/10.1016/j.dcn.2012.08.005
[41] Martzoukou, M., Papadopoulou, D., & Kosmidis, M.-H. J. J. o. P. R. (2017). The Comprehension of Syntactic and Affective Prosody by Adults with Autism Spectrum Disorder without Accompanying Cognitive Deficits. Journal of Psycholinguistic Research, 46, 1573-1595.
https://doi.org/10.1007/s10936-017-9500-4
[42] Matsuda, S., & Yamamoto, J. (2015). Intramodal and Cross-Modal Matching of Emotional Expression in Young Children with Autism Spectrum Disorders. Research in Autism Spectrum Disorders, 10, 109-115.
https://doi.org/10.1016/j.rasd.2014.11.010
[43] Matsumoto, K., Sugiyama, T., Saito, C., Kato, S., Kuriyama, K., Kanemoto, K., & Nakamura, A. J. J. o. P. N. (2016). Behavioral Study on Emotional Voice Perception in Children with Autism Spectrum Disorder. Journal of Pediatric Neuropsychology, 2, 108-118.
https://doi.org/10.1007/s40817-016-0021-0
[44] Mazefsky, C. A., Conner, C. M., & Oswald, D. P. (2010). Association between Depression and Anxiety in High-Functioning Children with Autism Spectrum Disorders and Maternal Mood Symptoms. Autism Research, 3, 120-127.
https://doi.org/10.1002/aur.133
[45] McCann, J., Peppe, S., Gibbon, F. E., O’Hare, A., & Rutherford, M. (2007). Prosody and Its Relationship to Language in School-Aged Children with High-Functioning Autism. International Journal of Language and Communication Disorders, 42, 682-702.
https://doi.org/10.1080/13682820601170102
[46] Milosavljevic, B., Carter Leno, V., Simonoff, E., Baird, G., Pickles, A., Jones, C. R. G., Happé, F. et al. (2016). Alexithymia in Adolescents with Autism Spectrum Disorder: Its Relationship to Internalising Difficulties, Sensory Modulation and Social Cognition. Journal of Autism and Developmental Disorders, 46, 1354-1367.
https://doi.org/10.1007/s10803-015-2670-8
[47] Ozonoff, S., Pennington, B. F., & Rogers, S. J. (1990). Are There Emotion Perception Deficits in Young Autistic Children? The Journal of Child Psychology and Psychiatry, 31, 343-361.
https://doi.org/10.1111/j.1469-7610.1990.tb01574.x
[48] Patel, A. D. (2008). Music, Language, and the Brain. Oxford: Oxford University Press.
[49] Patel, A. D. (2012). Language, Music, and the Brain: A Resource-Sharing Framework. In P. Rebuschat, M. Rohrmeier, J. Hawkins, & I. Cross (Eds.), Language and Music as Cognitive Systems (pp. 204-223). Oxford: Oxford University Press.
[50] Patel, A. D. (2013). Sharing and Nonsharing of Brain Resources for Language and Music. In M. A. Arbib (Ed.), Language, Music, and the Brain: A Mysterious Relationship (pp. 329-355). Cambridge, MA: MIT Press.
https://doi.org/10.7551/mitpress/9780262018104.003.0014
[51] Paul, R., Augustyn, A., Klin, A., & Volkmar, F. R. (2005). Perception and Production of Prosody by Speakers with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 35, 205-220.
https://doi.org/10.1007/s10803-004-1999-1
[52] Peppé, S., & McCann, J. (2003). Assessing Intonation and Prosody in Children with Atypical Language Development: The PEPS-C Test and the Revised Version. Clinical Linguistics & Phonetics, 17, 345-354.
https://doi.org/10.1080/0269920031000079994
[53] Peppé, S., McCann, J., Gibbon, F., O’Hare, A., & Rutherford, M. (2006). Assessing Prosodic and Pragmatic Ability in Children with High-Functioning Autism. Journal of Pragmatics, 38, 1776-1791.
https://doi.org/10.1016/j.pragma.2005.07.004
[54] Peppé, S., McCann, J., Gibbon, F., O’Hare, A., & Rutherford, M. (2007). Receptive and Expressive Prosodic Ability in Children with High-Functioning Autism. Journal of Speech Language and Hearing Research, 50, 1015-1028.
https://doi.org/10.1044/1092-4388(2007/071)
[55] Philip, R. C. M., Whalley, H. C., Stanfield, A. C., Sprengelmeyer, R., Santos, I. M., Young, A. W., Hall, J. et al. (2010). Deficits in Facial, Body Movement and Vocal Emotional Processing in Autism Spectrum Disorders. Psychological Medicine, 40, 1919-1929.
https://doi.org/10.1017/S0033291709992364
[56] Quintin, E.-M., Bhatara, A., Poissant, H., Fombonne, E., & Levitin, D. J. (2011). Emotion Perception in Music in High-Functioning Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 41, 1240-1255.
https://doi.org/10.1007/s10803-010-1146-0
[57] Rosenblau, G., Kliemann, D., Dziobek, I., & Heekeren, H. R. (2017). Emotional Prosody Processing in Autism Spectrum Disorder. Social Cognitive and Affective Neuroscience, 12, 224-239.
[58] Russell, J. A. (1980). A Circumplex Model of Affect. Journal of Personality and Social Psychology, 39, 1161-1178.
https://doi.org/10.1037/h0077714
[59] Samson, A. C., Phillips, J. M., Parker, K. J., Shah, S., Gross, J. J., & Hardan, A. Y. (2014). Emotion Dysregulation and the Core Features of Autism Spectrum Disorder. Journal of Autism and Developmental Disorders, 44, 1766-1772.
https://doi.org/10.1007/s10803-013-2022-5
[60] Scambler, D. J., Hepburn, S., Rutherford, M. D., Wehner, E. A., & Rogers, S. J. (2007). Emotional Responsivity in Children with Autism, Children with Other Developmental Disabilities, and Children with Typical Development. Journal of Autism and Developmental Disorders, 37, 553-563.
https://doi.org/10.1007/s10803-006-0186-y
[61] Schubert, E. (2013). Emotion Felt by the Listener and Expressed by the Music: A Literature Review and Theoretical Investigation. Frontiers in Psychology, 4, 837.
https://doi.org/10.3389/fpsyg.2013.00837
[62] Snow, M. E., Hertzig, M. E., & Shapiro, T. (1987). Expression of Emotion in Young Autistic Children. Journal of the American Academy of Child & Adolescent Psychiatry, 26, 836-838.
https://doi.org/10.1097/00004583-198726060-00006
[63] Stanutz, S., Wapnick, J., & Burack, J. A. (2014). Pitch Discrimination and Melodic Memory in Children with Autism Spectrum Disorders. Autism, 18, 137-147.
https://doi.org/10.1177/1362361312462905
[64] Stephenson, K. G., Quintin, E. M., & South, M. (2016). Age-Related Differences in Response to Music-Evoked Emotion among Children and Adolescents with Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 46, 1142-1151.
https://doi.org/10.1007/s10803-015-2624-1
[65] Sun, X., Allison, C., Matthews, F. E., Zhang, Z., Auyeung, B., Baron-Cohen, S., & Brayne, C. (2015). Exploring the Underdiagnosis and Prevalence of Autism Spectrum Conditions in Beijing. Autism Research, 8, 250-260.
https://doi.org/10.1002/aur.1441
[66] Taylor, L. J., Maybery, M. T., Grayndler, L., & Whitehouse, A. J. O. (2015). Evidence for Shared Deficits in Identifying Emotions from Faces and from Voices in Autism Spectrum Disorders and Specific Language Impairment. International Journal of Language and Communication Disorders, 50, 452-466.
https://doi.org/10.1111/1460-6984.12146
[67] Tillmann, B., & Bigand, E. (2015). Response: A Commentary on: “Neural Overlap in Processing Music and Speech”. Frontiers in Human Neuroscience, 9, 330.
https://doi.org/10.3389/fnhum.2015.00491
[68] Van Lancker, D., Cornelius, C., & Kreiman, J. (1989). Recognition of Emotional-Prosodic Meanings in Speech by Autistic, Schizophrenic, and Normal Children. Developmental Neuropsychology, 5, 207-226.
https://doi.org/10.1080/87565648909540433
[69] Whipple, C. M., Gfeller, K., Driscoll, V., Oleson, J., & McGregor, K. (2015). Do Communication Disorders Extend to Musical Messages? An Answer from Children with Hearing Loss or Autism Spectrum Disorders. Journal of Music Therapy, 52, 78-116.
https://doi.org/10.1093/jmt/thu039
[70] Xu, G., Strathearn, L., Liu, B., & Bao, W. (2018). Prevalence of Autism Spectrum Disorder among Us Children and Adolescents, 2014-2016. JAMA, 319,81-82.
https://doi.org/10.1001/jama.2017.17812