温水沤麻与酶法沤麻液细菌群落结构分析
Analysis of Bacterial Community Structure in Water Retting and Enzymatic Retting Liquid
DOI: 10.12677/BP.2012.23019, PDF, HTML, XML,  被引量 下载: 3,343  浏览: 9,703  国家科技经费支持
作者: 侯立波*:横浜国立大学环境情报学府;刘晓兰:齐齐哈尔大学食品与生物工程学院
关键词: 温水沤麻酶法沤麻细菌群落结构变性梯度凝胶电泳(DGGE)Warm Water Retting; Enzymatic Retting; Bacterial Community Structure; Denaturing Gradient Gel Electrophoresis
摘要: 为了研究温水沤麻与酶法沤麻液中细菌群落结构,采用DGGE技术(Denaturing gradient gel electrophoresis)对沤麻液的细菌菌群结构进行了分析。采用DGGE分析细菌多样性时,当凝胶浓度为8%,变性剂梯度范围为25%~65%,恒温60150 V电压下电泳7 h左右时,DGGE分离的效果较好。PCR-DGGE指纹图谱显示,亚麻温水脱胶及酶法脱胶过程中条带数量不同。通过对温水沤麻与酶法沤麻样品不同时期沤麻液中16S rDNA V3片段PCR产物的DGGE条带进行分子克隆、序列测定和Blast分析及建立系统发育树。从序列结果中我们发现,γ-变形菌亚门中的假单胞菌为温水沤麻与酶法沤麻过程中的共同优势菌属。芽孢杆菌属的出现伴随着整个温水沤麻和酶法沤麻过程。此外,温水沤麻与酶法沤麻样品群落结构多样性也表现了一定的差异性。
Abstract: In order to investigate the bacterial community diversity of warm water retting liquid and enzymatic retting liquid, both of the retting liquid samples were studied by using Denaturing Gradient Gel Electrophoresis (DGGE). During using DGGE method to analyze the bacterial diversity, DGGE bands were separated obviously by the gel concentration of 8%, range of 25% - 65% denaturant gradient, temperature of 60˚C and voltage of 150 V for electrophoresis time of about 7 h. Through analysis, the selected bands of DGGE profiles were cloned and sequenced. The obtained sequence results by Blast analysis were used to construct the phylogenetic tree. We found Pseudomonas of Gammaproteobacteria were the dominant bacteria both in warm water retting and enzymatic retting liquid samples. Bacillus of Firmicutes occurred along with the whole process of the two retting samples. However, in addition to share the dominant bacteria, the two samples also represented the differences in bacterial community structure.
文章引用:侯立波, 刘晓兰. 温水沤麻与酶法沤麻液细菌群落结构分析[J]. 生物过程, 2012, 2(3): 116-122. http://dx.doi.org/10.12677/BP.2012.23019

参考文献

[1] 高莲欣. 谈亚麻纤维[J]. 中国纤检, 2003, 8: 34-35.
[2] 王启祥. 亚麻纤维开发利用初探[J]. 北京纺织, 2003, 24(4): 28-29.
[3] 江浩, 刘晓兰, 郑喜群. 化学助剂在亚麻脱胶工艺中的应用[J]. 齐齐哈尔轻工学院学报, 1997, 13(3): 1-4.
[4] H. S. S. Sharma. Enzymatic degradation of residual non-cellu- lose polysaccharides present on dew retted flax fiber. Applied and Environmental Microbiology, 1987, 26(4): 358.
[5] 彭源德, 杨喜爱, 严理译. 加速亚麻酶脱胶的加工技术[J]. 中国麻业, 2005, 5(27): 269-274.
[6] 田英华, 刘晓兰, 邓永平. 果胶酶高产菌Aspergillus niger HYA4的选育[J]. 齐齐哈尔大学学报, 2005, 21(1): 12-14.
[7] G. Muyzer, E. C. Waal and A. G. Uitterlinden. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59: 695-700.
[8] 宫曼丽, 任南琪, 邢德峰. DGGE/TGGE技术及其在微生物分子生态学中的应用[J]. 微生物学报, 2004, 44(6): 845-848.
[9] 田英华, 刘晓兰, 郑喜群. 果胶复合酶的生产及其在亚麻脱胶中的应用[J]. 纺织导报, 2009, 8: 91-93.
[10] 于翠英, 夏敬义主编. 亚麻纺纱工艺学[M]. 哈尔滨: 黑龙江科技出版社, 1997: 1-69.
[11] 魏薇. 利用DGGE技术研究黑龙江省各地沤麻系统中细菌多样性[D]. 哈尔滨: 黑龙江大学, 2007.
[12] 邢德峰, 任南琪. 应用DGGE研究微生物群落时的常见问题分析[J]. 微生物学报, 2006, 46(2): 331-335.
[13] Y. Yang, R. S. Dungan, A. M. Ibekwe, et al. Effect of organic mulches on soil bacterial communities one year after application. Biology and Fertility of Soils, 2003, 38: 273-281.
[14] 张海艳. 东太平洋金属结核区微生物多样性分析[D]. 厦门: 厦门大学, 2006.
[15] 陈三凤, 李季伦. 黄杆菌(Flavobacterium sp.)几丁质酶的纯化和性质[J]. 微生物学报, 1994, 34(1): 14-19.
[16] 彭霞薇, 赵哀梅, 白志辉, 张洪勋. 果胶酶激发子对黄瓜叶片病程相关蛋白及细胞壁物质的影响[J]. 应用与环境生物学报, 2006, 12(3): 325-328.