纳米压印技术制备硅基有序一维、二维纳米结构
Fabrication of Si-Based 1D,2D Ordered Nano Structure by Nanoimprint Lithography
摘要: 微电子器件的小型化是集成电路图形尺寸即将突破传统光刻极限,发展新的微加工技术更是当今科研工作在重要目标之一。纳米压印技术是较有应用前景的技术。本文主要介绍了纳米压印的基本过程,利用一维和二维石英光栅为模版,采用紫外光固化原理,将模版上的有序周期结构转移到光刻胶上。其分辨率只与模版图案的尺寸有关,而不受光学光刻的最短曝光波长的物理限制。利用反应离子刻蚀技术将已固化的光刻胶上的图形最终转移到硅衬底上。AFM观测结果表明压印过程可以将模版上的结构完全保真地转移到硅衬底上。
Abstract: The dimension of the microelectronic devices is reduced year by year as the development of the modern microelectronic technology. So, the research of the fabrication of nanometer structures becomes one of the most interesting topics. Nanoimprint lithography (NIL) is a more promising technology. In this paper, the process of nanoimprint lithography was introduced. And, 1-D and 2-D quartz grating molds with the period 2 µm was transferred to Si substrate by NIL. The resolution is only related to the size and the template pattern without the limitation of optical lithography exposure wavelength. AFM measurement showed the perfect fidelity of the imprint process.
文章引用:李卫. 纳米压印技术制备硅基有序一维、二维纳米结构[J]. 现代物理, 2011, 1(3): 59-65. http://dx.doi.org/10.12677/mp.2011.13010

参考文献

[1] S. Y. Chou, P. R. Krauss and P. J. Renstrom. Imprint lithography with 25-nanometer resolution. Science, 1996, 272(5258): 85-87.
[2] M. D. Austin, H. X. Ge, W. Wu, M. T. Li, Z. N. Yu, D. Wasserman, S. A. Lyon and S. Y. Chou. Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography. Applied Physics Letters, 2004, 84(26): 5299-5301.
[3] M. C. McAlpine, R. S. Friedman and D. M. Lieber. Nanoimprint lithography for hybrid plastic electronics. Nano Letters, 2003, 3(4): 443-445.
[4] D. Li, L. J. Guo. Micron-scale organic thin film transistors with conducting polymer electrodes patterned by poly-mer inking and stamping. Applied Physics Letters, 2006, 88(6): Article ID 063513.
[5] W. Zhang, S. Y. Chou. Fabrication of 60-nm transis-tors on 4-in. wafer using nanoimprint at all lithography levels. Applied Physics Letters, 2003, 83(8): 1632-1635.
[6] K. Kosuke, M. Akihiro. High-aspect-ratio nanopillar structures fabricated by nanoimprinting with elongation phenomenon. Jour- nal of Vacuum Science & Tech-nology B, 2008, 26(2): 582- 584.
[7] Y. Ekinci, H. H. Solak, C. David and H. Sigg. Bilayer Al wire- grids as broadband and high-performance polarizers Optics Express, 2006, 14(6): 2323-2334.
[8] Z. J. Hu, G. Baralia, V. Bayot, J. F. Gohy and A. M. Jonas. Nanoscale control of polymer crystallization by nanoimprint lithography. Nano Letters, 2005, 5(9): 1738-1743.
[9] S. W. Ahn, K. D. Lee, J. S. Kim, S. H. Kim, J. D. Park, S. H. Lee and P. W. Yoon. Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography. Nanotechnology, 2005, 16(9): 1874-1878.
[10] J. D. Hoff, L. J. Cheng, E. Meyhofer, L. J. Guo and A. J. Hunt. Nanoscale protein patterning by imprint lithography. Nano Letters, 2004, 4(5): 853-857.
[11] W. Hu, E. K. F. Yim, R. M. Reano, K. W. Leong and S. W. Pang. Effects of nanoimprinted patterns in tissue-culture polystyrene on cell behavior. Journal of Vacuum Science & Technology B, 2005, 23(6): 2984-2989.