撤稿:整合素β1在鲤CyHV-3病毒中基因相对表达量研究
ArticleTitle: Relative Expression of Integrin β1 in Cyprinid Herpesvirus 3 (CyHV-3) Virus
DOI: 10.12677/IJE.2020.92019, PDF, HTML, 下载: 590  浏览: 1,193  国家科技经费支持
作者: 孙佳鑫, 贾智英*:上海海洋大学水产科学国家级实验教学示范中心;水产动物遗传育种中心上海市协同创新中心,上海;中国水产科学研究院黑龙江水产研究所,黑龙江 哈尔滨;姜晓娜:中国水产科学研究院黑龙江水产研究所,黑龙江 哈尔滨
关键词: 整合素β1鲤鱼表达CyHV-3Integrin β1 Common Carp Expression CyHV-3
摘要: 撤稿声明:“整合素β1在鲤CyHV-3病毒中基因相对表达量研究”一文刊登在2020年5月出版的《世界生态学》2020年第9卷第2期第151-158页上。因文章实验数据有误,作者主动要求撤稿。根据国际出版流程,编委会现决定撤除此稿件,保留原出版出处:孙佳鑫, 贾智英, 姜晓娜. 整合素β1在鲤CyHV-3病毒中基因相对表达量研究[J]. 世界生态学, 2020, 9(2): 151-158. https://doi.org/10.12677/IJE.2020.92019
文章引用:  

参考文献

[1] Schittenhelm, J., Tabatabai, G. and Sipos, B. (2016) The Role of Integrins in Primary and Secondary Brain Tumors. Histology and Histopathology, 31, 1069-1078.
[2] Means, T.K. and Luster, A.D. (2010) Integrins Limit the Toll. Nature Immunology, 11, 691-693.
https://doi.org/10.1038/ni0810-691
[3] Paolillo, M., Serra, M. and Schinelli, S. (2016) Integrins in Glioblastoma: Still an Attractive Target? Pharmacological Research, 113, 55-61.
https://doi.org/10.1016/j.phrs.2016.08.004
[4] Gahmberg, C.G., Gronholm, M., Madhavan, S., et al. (2019) Regulation of Cell Adhesion: A Collaborative Effort of Integrins, Their Ligands, Cytoplasmic Actors, and Phosphorylation. Quarterly Reviews of Biophysics, 52, e10.
https://doi.org/10.1017/S0033583519000088
[5] Skubitz, A.P. (2002) Adhesion Molecules. Cancer Treatment Research, 107, 305-329.
https://doi.org/10.1007/978-1-4757-3587-1_15
[6] Hynes, R.O. (2002) Integrins: Bidirectional, Allosteric Signaling Machines. Cell, 110, 673-687.
https://doi.org/10.1016/S0092-8674(02)00971-6
[7] Fang, Z., Yao, W., Fu, Y., et al. (2010) Increased Integrin Alpha5beta1 Heterodimer Formation and Reduced c-Jun Expression Are Involved in Integrin Beta1 Overexpression-Mediated Cell Growth Arrest. Journal of Cellular Biochemistry, 109, 383-395.
https://doi.org/10.1002/jcb.22416
[8] Feldman, L.E., Shin, K.C., Natale, R.B., et al. (1991) Beta 1 Integrin Expression on Human Small Cell Lung Cancer Cells. Cancer Research, 51, 1065-1070.
[9] Song, D., Tang, L., Huang, J., et al. (2019) Roles of Transforming Growth Factor-Beta and Phosphatidylinositol 3-Kinase Isoforms in Integrin Beta1-Mediated Bio-Behaviors of Mouse Lung Telocytes. Journal of Translational Medicine, 17, 431.
https://doi.org/10.1186/s12967-019-02181-2
[10] Yamamoto, H., Ehling, M., Kato, K., et al. (2015) Integrin Beta1 Controls VE-Cadherin Localization and Blood Vessel Stability. Nature Communications, 6, 6429.
https://doi.org/10.1038/ncomms7429
[11] Lilja, J. and Ivaska, J. (2018) Integrin Activity in Neuronal Connectivity. Journal of Cell Science, 131, jcs212803.
https://doi.org/10.1242/jcs.212803
[12] Hannigan, G., Troussard, A.A. and Dedhar, S. (2005) Integrin-Linked Kinase: A Cancer Therapeutic Target Unique among Its ILK. Nature Reviews Cancer, 5, 51-63.
https://doi.org/10.1038/nrc1524
[13] Cheng, S.Y., Sun, G., Schlaepfer, D.D., et al. (2014) Grb2 Promotes Integrin-Induced Focal Adhesion Kinase (FAK) Autophosphorylation and Directs the Phosphorylation of Protein Tyrosine Phosphatase Alpha by the Src-FAK Kinase Complex. Molecular and Cellular Biology, 34, 348-361.
https://doi.org/10.1128/MCB.00825-13
[14] Llinas-Arias, P. and Esteller, M. (2017) Epigenetic Inactivation of Tumour Suppressor Coding and Non-Coding Genes in Human Cancer: An Update. Open Biology, 7, Article ID: 170152.
https://doi.org/10.1098/rsob.170152
[15] Morris, M.A., Laverick, L., Wei, W., et al. (2018) The EBV-Encoded Oncoprotein, LMP1, Induces an Epithelial-to-Mesenchymal Transition (EMT) via Its CTAR1 Domain through Integrin-Mediated ERK-MAPK Signalling. Cancers (Basel), 10, pii: E130.
https://doi.org/10.3390/cancers10050130
[16] Jahan, R., Macha, M.A., Rachagani, S., et al. (2018) Axed MUC4 (MUC4/X) Aggravates Pancreatic Malignant Phenotype by Activating Integrin-beta1/FAK/ERK Pathway. Biochimica et Biophysica Acta—Molecular Basis of Disease, 1864, 2538-2549.
https://doi.org/10.1016/j.bbadis.2018.05.008
[17] Li, H., Yang, G., Ma, F., et al. (2017) Molecular Characterization of a Fish-Specific Toll-Like Receptor 22 (TLR22) Gene from Common Carp (Cyprinus carpio L.) Evolutionary Relationship and Induced Expression upon Immune Stimulants. Fish and Shellfish Immunology, 63, 74-86.
https://doi.org/10.1016/j.fsi.2017.02.009
[18] Adamek, M., Syakuri, H., Harris, S., et al. (2013) Cyprinid Herpesvirus 3 Infection Disrupts the Skin Barrier of Common Carp (Cyprinus carpio L.). Veterinary Microbiology, 162, 456-470.
https://doi.org/10.1016/j.vetmic.2012.10.033
[19] Livak, K.J. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-ΔΔCT Method. Methods, 25, 402-408.
https://doi.org/10.1006/meth.2001.1262
[20] Ronsmans, M., Boutier, M., Rakus, K., et al. (2014) Sensitivity and Permissivity of Cyprinus carpio to Cyprinid Herpesvirus 3 during the Early Stages of Its Development: Importance of the Epidermal Mucus as an Innate Immune Barrier. Veterinary Research, 45, 100.
https://doi.org/10.1186/s13567-014-0100-0
[21] Hedrick, R.P., Gilad, O., Yun, S., et al. (2000) A Herpesvirus Associated with Mass Mortality of Juvenile and Adult Koi, a Strain of Common Carp. Journal of Aquatic Animal Health, 12, 44-57.
https://doi.org/10.1577/1548-8667(2000)012<0044:AHAWMM>2.0.CO;2
[22] Ilouze, M., Dishon, A. and Kotler, M. (2006) Characterization of a Novel Virus Causing a Lethal Disease in Carp and Koi. Microbiology and Molecular Biology Reviews, 70, 147-156.
https://doi.org/10.1128/MMBR.70.1.147-156.2006
[23] Sunarto, A., McColl, K.A., Crane, M.S., et al. (2014) Characteristics of Cyprinid Herpesvirus 3 in Different Phases of Infection: Implications for Disease Transmission and Control. Veterinary Research, 188, 45-53.
https://doi.org/10.1016/j.virusres.2014.03.024
[24] Zhang, Z., Zheng, Z., Cai, J., et al. (2017) Effect of Cadmium on Oxidative Stress and Immune Function of Common Carp (Cyprinus carpio L.) by Transcriptome Analysis. Aquatic Toxicology, 192, 171-177.
https://doi.org/10.1016/j.aquatox.2017.09.022
[25] Agrez, M.V., Shafren, D.R., Gu, X., et al. (1997) Integrin Alpha V Beta 6 Enhances Coxsackievirus B1 Lytic Infection of Human Colon Cancer Cells. Virology, 239, 71-77.
https://doi.org/10.1006/viro.1997.8831