锂离子动力电池TMS研究
Review on TMS of Lithium-Ion Power Battery
DOI: 10.12677/AEPE.2021.92006, PDF, 下载: 567  浏览: 1,152 
作者: 郑金奎, 何 川, 李茂德:同济大学机械与能源工程学院,上海
关键词: 锂离子动力电池散热方式热管理Lithium Ions Power Battery Heat Dissipation Thermal Management
摘要: 锂离子电池的高比能量、大输出功率以及低自放电率等一系列独有优势使其迅速成为电动汽车的重要核心。但是锂电池具有较高的温度敏感性,电池热管理系统对提高电池的效率、可靠性和安全性有着重要的作用。本文综述了近年来国内外主流的电池包热管理形式,包括自然冷却、强制风冷、液冷和相变冷却等。阐述了各种冷却散热方式的优缺点,针对电池热管理提出初步的分析讨论,为电池热管理系统的完善提出优化意见。
Abstract: Lithium-ion battery has a series of unique advantages such as high specific energy, large output power and low self-discharge rate, which makes it become an important core of electric vehicles. However, because of the high temperature sensitivity of lithium batteries, the battery thermal management system plays an important role in improving the efficiency, reliability and safety of batteries. In this paper, the main thermal management methods of battery pack in recent years, in-cluding natural cooling, forced air cooling, liquid cooling and phase change cooling, are reviewed. The advantages and disadvantages of various cooling methods are expounded, and the preliminary analysis and discussion are put forward for the battery thermal management system, and the opti-mization opinions are put forward for the improvement of the battery thermal management sys-tem.
文章引用:郑金奎, 何川, 李茂德. 锂离子动力电池TMS研究[J]. 电力与能源进展, 2021, 9(2): 46-54. https://doi.org/10.12677/AEPE.2021.92006

参考文献

[1] Li, W., Chen, S., Peng, X., et al. (2019) A Comprehensive Approach for the Clustering of Similar-Performance Cells for the Design of a Lithium-Ion Battery Module for Electric Vehicles. Engineering, 5, 795-802.
https://doi.org/10.1016/j.eng.2019.07.005
[2] Huang, Y., Mei, P., Lu, Y., et al. (2019) A Novel Approach for Lithium-Ion Battery Thermal Management with Streamline Shape Mini Channel Cooling Plates. Applied Thermal Engi-neering, 157, 113623.
https://doi.org/10.1016/j.applthermaleng.2019.04.033
[3] Malik, M., Dincer, I., Rosen, M.A., et al. (2018) Ther-mal and Electrical Performance Evaluations of Series Connected Li-Ion Batteries in a Pack with Liquid Cooling. Applied Thermal Engineering, 129, 472-481.
https://doi.org/10.1016/j.applthermaleng.2017.10.029
[4] Kim, J., Oh, J. and Lee, H. (2019) Review on Battery Thermal Management System for Electric Vehicles. Applied Thermal Engineering, 149, 192-212.
https://doi.org/10.1016/j.applthermaleng.2018.12.020
[5] Yan, J., Wang, Q., Li, K. and Sun, J. (2016) Numerical Study on the Thermal Performance of a Composite Board in Battery Thermal Management System. Applied Thermal En-gineering, 106, 131-140.
https://doi.org/10.1016/j.applthermaleng.2016.05.187
[6] 叶贞. 锂离子电池模型的建立及电池管理系统的研究[D]: [硕士学位论文]. 武汉: 武汉理工大学, 2013.
[7] 齐晓霞, 王文, 邵力清. 混合动力电动车用电源热管理的技术现状[J]. 电源技术, 2005, 29(3): 178-181.
[8] 杨志刚, 黄慎, 赵兰萍. 电动汽车锂离子电池组散热优化设计[J]. 计算机辅助工程, 2011, 20(3): 1-5.
[9] 洪思慧, 张新强, 双凤, 等. 基于热管技术的锂离子动力电池热管理系统研究进展[J]. 化工进展, 2014, 11(11): 2923-2927.
[10] Chen, K., Wang, S., Song, M. and Chen, L. (2017) Configuration Optimization of Battery Pack in Parallel Air-Cooled Battery Thermal Management System Using an Opti-mization Strategy. Applied Thermal Engineering, 123, 177-186.
https://doi.org/10.1016/j.applthermaleng.2017.05.060
[11] Lu, Z., Meng, X.Z., Wei, L.C., et al. (2016) Thermal Management of Densely-Packed EV Battery with Forced Air Cooling Strategies. Energy Procedia, 88, 682-688.
https://doi.org/10.1016/j.egypro.2016.06.098
[12] Chen, K., Song, M., Wei, W. and Wang, S. (2018) Structure Optimization of Parallel Air-Cooled Battery Thermal Management System with U-Type Flow for Cooling Efficiency Im-provement. Energy, 145, 603-613.
https://doi.org/10.1016/j.energy.2017.12.110
[13] An, Z., Shah, K., Jia, L. and Ma, Y. (2019) A Parametric Study for Optimization of Minichannel Based Battery Thermal Management System. Applied Thermal Engineering, 154, 593-601.
https://doi.org/10.1016/j.applthermaleng.2019.02.088
[14] 邓磊. 基于改进PNGV模型的动力锂电池 SOC估计和充电优化[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2014.
[15] Rao, Z., Wang, Q. and Huang C. (2016) Investigation of the Thermal Performance of Phase Change Material/Mini-Channel Coupled Battery Thermal Manage-ment System. Applied Energy, 164, 659-669.
https://doi.org/10.1016/j.apenergy.2015.12.021
[16] Li, W., Peng, X., Xiao, M., Garg, A. and Gao, L. (2019) Mul-ti-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle. International Journal of Energy Research, 43, 3668-3680.
https://doi.org/10.1002/er.4518
[17] Sabbah, R., Kizilel, R., Selman, J.R. and Al-Hallaj, S. (2008) Active (Air-Cooled) vs Passive (Phase Change Material) Thermal Management of High Power Lithium-Ion Packs: Limitation of Temperature Rise and Uniformity of Temperature Distribution. Journal of Power Sources, 182, 630-638.
https://doi.org/10.1016/j.jpowsour.2008.03.082
[18] Rao, Z., Wang, S. and Zhang, G. (2011) Simulation and Experiment of Thermal Energy Management with Phase Change Material for Ageing LiFePO4 Power Battery. Energy Conversion and Management, 52, 3408-3414.
https://doi.org/10.1016/j.enconman.2011.07.009
[19] Javani, N., Dincer, I. and Naterer, G.F. (2015) Numerical Modeling of Submodule Heat Transfer with Phase Change Material for Thermal Management of Electric Vehicle Battery Packs. Journal of Thermal Science and Engineering Applications, 7, 031005.
https://doi.org/10.1115/1.4029053
[20] Peterson, G.P. (1994) An Introduction to Modelling, Testing and Applica-tion. John Wiley and Sons, New York.
[21] Zhao, R., Gu, J. and Liu, J. (2015) An Experimental Study of Heat Pipe Thermal Management System with Wet Cooling Method for Lithium Ion Batteries. Journal of Power Sources, 273, 1089-1097.
https://doi.org/10.1016/j.jpowsour.2014.10.007
[22] Smith, J., Singh, R., Hinterberger, M. and Mochizuki, M. (2018) Battery Thermal Management System for Electric Vehicle Using Heat Pipes. International Journal of Thermal Sciences, 134, 517-529.
https://doi.org/10.1016/j.ijthermalsci.2018.08.022
[23] Gan, Y., Wang, J., Liang, J., et al. (2020) Development of Thermal Equivalent Circuit Model of Heat Pipe-Based Thermal Management System for a Battery Module with Cylin-drical Cells. Applied Thermal Engineering, 164, 114523.
https://doi.org/10.1016/j.applthermaleng.2019.114523
[24] Zhu, J., Sun, Z., Wei, X., Dai, H. and Gu, W. (2017) Experimental Investigations of an AC Pulse Heating Method for Vehicular High Power Lithium-Ion Batteries at Subzero Temperatures. Journal of Power Sources, 367, 145-157.
https://doi.org/10.1016/j.jpowsour.2017.09.063
[25] Yang, X.G., Liu, T. and Wang, C.Y. (2021) Thermally Mod-ulated Lithium Iron Phosphate Batteries for Mass-Market Electric Vehicles. Nature Energy, 6, 176-185.
https://doi.org/10.1038/s41560-020-00757-7