基于水凝胶的生物材料再生修复退变椎间盘的研究进展
Recent Advances of Hydrogel‐Based Biomaterials Used for Regenerationof Nucleus Pulposus in Intervertebral Disc Degeneration
DOI: 10.12677/ACM.2021.1110639, PDF, HTML, XML, 下载: 389  浏览: 808 
作者: 张皓博, 胡斯乐, 赵宇楠:内蒙古医科大学,内蒙古 呼和浩特;内蒙古医科大学第二附属医院,内蒙古 呼和浩特
关键词: 水凝胶椎间盘椎间盘退变再生医学生物相容性材料Hydrogel Intervertebral Disc Intervertebral Disc Degeneration Regenerative Medicine Biocompatible Material
摘要: 下腰痛是一种日益普遍的症状,主要与椎间盘退变有关。退变最早发生在髓核,髓核脱水和纤维环裂隙形成导致椎间盘突出及相关临床症状。水凝胶具有类似正常髓核组织的吸水和保水能力、良好的生物相容性和高度可调节的机械性能,被广泛地应用到椎间盘的再生修复治疗中。随着生物材料和组织工程技术的发展,水凝胶有望成为一种新的椎间盘退变性疾病的治疗策略。本文将对椎间盘退变的病理生理机制和水凝胶材料再生修复椎间盘的研究进展进行系统综述。
Abstract: Low back pain is an increasingly prevalent symptom mainly associated with intervertebral disc degeneration. Degeneration first occurs in the nucleus pulposus, and dehydration of the nucleus pulposus and annular fissure formation lead to disc herniation and associated clinical symptoms. Hydrogels are widely used in the regeneration and repair of intervertebral disc, because of water absorption and retention ability resembling the normal nucleus pulposus, good biocompatibility and tunable mechanical properties. With the development of biocompatible material and tissue engineering, hydrogel is expected to be a new treatment strategy for degenerative disc diseases. In this paper, the pathophysiological mechanism of intervertebral disc degeneration and the research progress of intervertebral disc regeneration with hydrogel materials are reviewed.
文章引用:张皓博, 胡斯乐, 赵宇楠. 基于水凝胶的生物材料再生修复退变椎间盘的研究进展[J]. 临床医学进展, 2021, 11(10): 4365-4372. https://doi.org/10.12677/ACM.2021.1110639

1. 引言

下腰痛(LBP)是导致残疾的主要原因,其终生患病率为80%~85% [1]。目前,下腰痛已成为患者来医院就诊的第二大病因和住院进行外科手术的第三大病因 [2] [3]。下腰痛不仅会给患者带来精神、生理上的痛苦,还会给家庭和社会带来沉重的经济负担,在美国,每年为缓解该疾病引发症状所支出的医疗费用超过1900亿美元 [4]。椎间盘退变和突出是引起下腰痛的主要原因。目前的治疗方法包括保守治疗、介入治疗和手术治疗。物理和药物治疗只能在短时间内缓解一定程度的疼痛症状 [5]。保守治疗失败的情况下,可以考虑硬膜外注射和射频消融等介入治疗手段 [6]。手术治疗主要包括椎间盘切除术、脊柱融合术、椎间盘置换术。对于症状、体征典型和影像学改变明显的患者,术后通常可获得较满意结果,但手术存在一定的局限性,包括椎间盘高度降低、生物力学改变、复发、高度侵入性、加速邻近节段退变、脊柱活动度下降等。所有的治疗目的都是控制椎间盘退变引起的疼痛,而不能逆转椎间盘的退变。因此,开发替代治疗方法以实现椎间盘的再生和修复成为目前研究的热点。随着对椎间盘退变病理机制的深入研究,基于生物材料的生物学治疗成为目前的研究热点。水凝胶不仅可以模拟人体组织的水分环境,具有良好的生物相容性,还可以与细胞进行物质的交换,是一种较理想的生物材料 [7],其中原位形成的水凝胶在椎间盘退变治疗中显示出许多优点。它们提供了一个水环境,可以使退化的微环境恢复水分,保护生物制剂,并且可以恢复部分机械性能。本文将对基于水凝胶的生物材料在退变椎间盘组织中的再生修复作用进行系统综述,并对目前存在的问题进行讨论。

2. 椎间盘退变的机制

椎间盘是位于相邻椎体之间的纤维软骨组织,由中央的髓核(nucleus pulposus, NP)、周围的纤维环(annulus fibrosus, AF)和软骨终板(cartilage endplate, CEP)组成,共同维持脊柱的稳定性和灵活性 [8]。髓核由低密度的髓核细胞与大量的细胞外基质组成。细胞外基质是由髓核细胞合成的,主要由II型胶原、蛋白聚糖、层粘连蛋白以及其他非胶原蛋白组成。各种蛋白聚糖和II型胶原共同形成一个致密的胶原纤维网状结构,使髓核具有与水结合的能力。根据年龄的不同,髓核的含水量可占髓核的75%~90%。髓核内各种成分结合在一起,形成立体网状胶样结构,使椎间盘能够抵抗压缩负荷和可逆变形。纤维环主要由15~25层同心圆排列的胶原纤维组成 [9]。纤维环分为内外两层,外环主要由I型与II型胶原蛋白构成,使椎间盘能够抵抗拉伸负荷,越靠近内环,I型胶原所占的比例越低,逐渐转变成与中央髓核特征相似的阻滞区。软骨终板是位于椎体两端的透明软骨组织,将椎间盘内压力分布到邻近的椎体上。软骨终板细胞是一种软骨细胞,能合成富含蛋白聚糖、I型胶原、II型胶原和水的细胞外基质。值得注意的是,髓核和纤维环几乎没有血供,主要通过外层纤维环和软骨终板毛细血管的扩散供应氧气和其他营养。基于上述结构,椎间盘极易发生退化且难以通过自身达到再生和修复。

椎间盘退变取决于多种因素,如年龄、遗传、外伤、职业因素、生活习惯等。目前研究认为,椎间盘的退变始于髓核细胞,髓核细胞的衰老和变性导致细胞外基质的合成代谢与分解代谢的比例失衡,表现为蛋白聚糖含量的减少和II型/I型胶原蛋白比例降低 [10]。同时,年龄相关的软骨终板退变使髓核细胞营养供应受限,从而导致椎间盘细胞无法合成和维持细胞外基质 [11]。此外,椎间盘退变与炎症因子如白细胞介素-1β (IL-1β)和肿瘤坏死因子-α (TNF-α)的上调有关 [12],这些炎症分子导致基质金属蛋白酶(MMPs)的过表达,最终导致细胞外基质分解代谢增加。细胞外基质的异常降解导致髓核的水合能力和抗负荷能力降低,使得传递到纤维环的应力集中和剪切力增加,从而增加了纤维环膨胀和裂隙形成的风险 [13]。血管和神经纤维通过裂隙侵入到椎间盘内部,从而导致椎间盘源性疼痛 [14]。当压力负荷超过纤维环的极限时就会导致椎间盘结构的破坏,如纤维环破裂、髓核突出等,引起一系列临床症状 [15]。

3. 水凝胶用于椎间盘再生修复

水凝胶是一种能够吸收大量水分的亲水聚合物网络,对于高度水合的髓核和纤维环组织再生特别有意义。除了水,它们还提供机械支撑和适合细胞生存和增殖的3D微环境 [16]。此外,水凝胶具备良好的生物相容性、生物可降解性、可控制释放性和制备的可重复性 [17] [18]。传统的预成型水凝胶必须植入皮下,给患者带来很多不便,因此其应用受到限制。为了解决这一问题,研究人员开发了原位形成和可注射的水凝胶,它们在注入体内前后经历溶胶–凝胶转变。可注射的水凝胶在注射前处于可流动的溶胶状态。它们可以通过微创方式注射到体内。注入后,聚合物溶液会根据注入部位的身体状况转变为不可流动的凝胶状态 [19]。因此,开发可注射水凝胶用于髓核植入和脊柱生物力学功能恢复是一个活跃的研究领域。理想的可注射水凝胶应该符合以下标准:① 在生理条件(温度、pH值和离子浓度)下凝胶化;② 凝胶后无有害副产物释放;③ 凝胶化发生的速度足以达到临床疗效。

4. 水凝胶的制备和分类

水凝胶的凝胶方法大致可分为两类:化学交联和物理交联,其中最主要的区别在于是否形成共价键。化学交联的特点是在各种化学反应中形成共价键,其中包括迈克尔加成反应、点击化学、二硫化物交联、硅烷化、酶促交联、光聚合、席夫碱交联等。由于形成共价键,化学交联水凝胶机械强度更强,对刺激更稳定,但一些交联剂具有潜在的细胞毒性。物理交联是由聚合物链缠结或物理相互作用产生的瞬时连接,如离子相互作用、氢键、和疏水作用等。物理交联水凝胶对微环境(如:pH、温度)变化敏感,且机械强度不如化学交联。根据来源,可注射水凝胶可分为天然、合成及复合水凝胶三大类。天然材料包括:透明质酸、壳聚糖、藻酸盐、纤维素及其衍生物、结冷胶等。这类材料通常具有良好的生物相容性、可降解性和为细胞生长提供支持,但其机械强度往往不能满足要求。与天然生物材料相比,基于合成材料的水凝胶具有可控性强、易于设计和良好的机械性能,常用的合成材料有:聚异丙基丙烯酰胺、聚乙二醇、聚氨酯等。为了制备性能更好的水凝胶,人们将天然材料与合成材料交联形成复合水凝胶,复合水凝胶兼具两者的特点,是目前研究椎间盘再生修复及置换的重要方向。复合水凝胶主要包括增强复合水凝胶和互穿聚合物复合水凝胶两大类。

5. 水凝胶在椎间盘退变中的再生修复作用

水凝胶制备灵活、种类多样,可以通过多种形式参与退变椎间盘组织的再生修复。如纤维环修复、人工髓核置换、细胞支架和输送生物活性成分等。

5.1. 水凝胶在纤维环修复中的应用

纤维环完整性受损是椎间盘退变的重要病理生理特征,近期的研究表明,即使是微小的纤维环损伤,也会对椎间盘的应力分布和局部的微环境造成影响,加速椎间盘退变 [20]。因此,纤维环的修复对于椎间盘的再生修复是必不可少的过程。可注射水凝胶密封纤维环是一种潜在治疗方案。纤维蛋白密封剂在猪模型中显示出良好的结果,促进了纤维环的修复,并促进抗炎细胞因子的产生。然而,纤维蛋白密封胶本身的硬度相对较低,在高浓度时降解迅速 [21]。Guterl等人使用纤维蛋白凝胶与京尼平交联剂来改善剪切刚度、抗降解性和凝胶组织粘附性 [22]。Yang等人开发了一种明胶–聚(γ-谷氨酸)水凝胶作为纤维环缺损的密封剂,可以恢复了受损椎间盘的完整性,且具有良好的密封效果和细胞相容性 [23] [24]。Bonnassar及其同事开发了一种用于纤维环修复的可注射核黄素交联高密度胶原蛋白水凝胶,不仅可以修复纤维环缺损,还可以增强髓核的水合能力,逆转椎间盘组织的退变 [25] [26]。Chik等人开发了一种由鼠尾I型胶原组成的玫瑰红交联胶原蛋白的水凝胶,用于将细胞输送到纤维环 [27]。Smit及其同事开发了一种用于纤维环闭合的共聚物水凝胶系统,Long等人进一步研究了该配方的修复耐力、疝出风险、生物相容性和生物力学修复 [28] [29]。Wang等人研究了鼠尾I型胶原水凝胶与柠檬酸、EDC和NHS联合使用在大鼠退变椎间盘模型中修复纤维环的情况 [30]。DiStefano等人开发了一种两部分修复策略,包括双修饰(氧化和甲基丙烯酸)糖胺聚糖,它可以化学吸附由纤维连接蛋白结合的纤维蛋白和聚乙二醇二丙烯酸酯(PEGDA)组成的可注射互穿网络水凝胶,以共价将水凝胶连接到纤维环组织 [31]。

5.2. 水凝胶在人工髓核假体中的应用

虽然各种外科手术在减轻疼痛方面取得了令人满意的临床效果,但这些治疗并不能恢复椎间盘的正常生物力学和防止邻近椎间盘退变的进展。人工髓核假体在椎间盘退变的治疗中已经取得很多的进展。水凝胶人工髓核假体可分为预制型和可注射型。PDN是使用最广泛的预制型人工髓核假体,该装置由疏水聚丙烯腈和亲水聚丙烯酰胺组成的共聚物水凝胶和聚乙烯护套组成。水凝胶吸收大量水膨胀,从而促进椎间盘高度恢复和缓冲机械负荷。护套可以限制其内部水凝胶的膨胀,保持植入物的形状 [32]。但通过长期临床随访发现,该假体术后可发生一些并发症,如假体移位、终板破裂、下腰部疼痛等,限制了其临床有效 [33]。NuCore可注射髓核是一种合成的重组蛋白水凝胶,不仅可以填充髓核区空隙、恢复椎间盘高度和生化功能,还可以封闭纤维环缺损,避免椎间盘进一步退变 [34]。不过,可注射水凝胶假体也存在水凝胶泄露、聚合过程中发生热损伤等风险。因此,人工髓核假体只能在空间上替换髓核,而不能达到再生修复椎间盘的作用。随着以水凝胶为载体的细胞和非细胞疗法的发展,人工髓核假体也将有进一步的发展空间。如NovocartDisc人工假体,它是一种定制的生物设备,分为两个步骤。首先从活检(如椎间盘突出区域)中分离出自体细胞,体外培养后与透明质酸和硫酸软骨素混合制备成水凝胶,然后将满载细胞的水凝胶注射到病变部位原位凝胶。不仅可以恢复髓核保水能力,还可以促进髓核细胞合成细胞外基质,逆转椎间盘退变 [35]。

5.3. 水凝胶作为细胞3D支架

越来越多的证据表明,椎间盘退变起源于髓核细胞的早期丢失。因此,用再生细胞补充椎间盘成为一种新的治疗策略。目前研究较多的有髓核细胞(NPs)、脊索细胞(NCs)、诱导多能干细胞、脂肪(ASCs)或骨髓(MSCs)来源的间充质干细胞等,其中ASCs和MSCs在椎间盘再生修复中的应用最为广泛。Colombier等人发现人类ASCs在TGF-β1和GDF-5协同作用下表现出向髓核样细胞分化的潜能。当植入小鼠皮下时,这些细胞也显示出分泌葡糖胺聚糖和II型胶原的能力,与天然髓核细胞的能力一致 [36]。在兔退变椎间盘模型中注射未分化的MSCs,可以降低基质金属蛋白酶的表达,促进II型胶原合成,从而抑制椎间盘退变 [37]。但是,退变椎间盘内部的微环境十分恶劣(如低氧、低营养物质、代谢产物堆积、酸性pH、高渗透压和高椎间盘内压),直接将细胞注射到椎间盘内会导致低存活率和细胞活性的改变。因此需要一种细胞3D支架来支持细胞的存活。目前已经有许多用于细胞3D支架的水凝胶系统。Malonzo等人通过体内体外实验证明,基于透明质酸的热敏水凝胶(TR-HG)能够促进hMSCs的存活和分化,使细胞外基质的合成增加 [38]。陈等人开发了一种光交联明胶–透明质酸甲基丙烯酸酯(GelHA)水凝胶,通过动物实验证实,GelHA水凝胶促进 ASCs向髓核细胞分化,并提高ASC对椎间盘的修复功能 [39]。Frith等人开发了一种基于酶促交联聚乙二醇–透明质酸的可注射水凝胶系统,在这个水凝胶中间充质前体细胞(MPCs)能够合成髓核组织相关的细胞外基质成分,添加多硫酸戊聚糖(PPS)可以增强效果 [40]。Francisco等人开发了一种可光交联的聚乙二醇–层粘连蛋白(PEG-LM111)水凝胶,发现其可促进髓核细胞聚集及糖胺多糖的合成,进一步研究发现,柔性化水凝胶可促进髓核细胞表型的维持以及特异性标记物的表达 [41]。Kumar等人合成了一种新型光固化可注射水凝胶系统,实验证明,该水凝胶可以封装hMSCs并且在低氧条件下促进其向髓核细胞分化 [42]。水凝胶从注射部位渗出是导致失败的主要原因。Zeng等人为了防止水凝胶渗漏,将MSCs封装在海藻酸盐水凝胶中,并加载到微冷冻凝胶(PMs)中以形成三维的细胞支架,体外实验和动物实验证明,经PMs增强的海藻酸盐水凝胶促进MSCs表达更高水平的髓核细胞标记物,并且可以防止细胞渗漏 [43]。

5.4. 水凝胶递送生物活性分子

除了作为细胞支架,水凝胶还可以搭载药物、生长因子和基因,并通过聚合物网络缓慢的释放,从而改善椎间盘的微环境,促进细胞外基质的合成,达到再生修复椎间盘的作用。Pan等人使用一种可注射热敏水凝胶,作为吉非替尼的可持续释放体系,在动物实验中证实可以促进髓核细胞细胞外基质合成,同时减少MMP-13表达 [44]。Paglia等人使用一种由硫醇修饰的透明质酸(TMHA)水凝胶递送生长因子PDGF-BB,结果表明,PDGF-BB 显著降低椎间盘退变,TMHA凝胶支架有助于防止细胞凋亡和Col3基质产生,同时保持椎间盘结构和生物力学功能 [45]。Li等人构建了一种可注射的纤维蛋白–透明质酸(FBG-HA)水凝胶,用于持续释放BMP-2/7,可以上调蛋白聚糖和II型胶原基因表达,并且促进髓核细胞的糖胺聚糖合成 [46]。Zheng等人新开发了一种活性氧响应的热敏水凝胶,作为合成生长激素释放激素类似物(MR409)的释控递送系统,并证明MR409通过抑制大鼠的分泌性自噬,防止针刺大鼠椎间盘引起的退变 [47]。Feng等人开发了一种可注射的MMP响应性复合水凝胶,可以根据MMP浓度按需释放MicroRNA-29,有效地沉默MMP-2的表达,抑制纤维化过程,逆转椎间盘退变 [48]。

6. 目前存在的局限性和挑战

虽然水凝胶在椎间盘退变中的研究已经取得很大的进展,但也存在许多不足。首先,在凝胶过程中,一些光交联水凝胶可能会由于紫外线对细胞造成损伤,一些化学交联剂可能对被封装的细胞具有潜在的毒性。比如,FibGen水凝胶中的交联剂京尼平可能通过抑制整合素结合而导致纤维环细胞凋亡 [49]。其次,在设计材料时要重视降解的速率,因为不适当的降解率会影响组织的均匀性或阻碍基质合成 [50]。再次,虽然一些水凝胶表现出令人满意的结果,但这些新开发水凝胶大多是在体外或体外进行研究的。即使是在体内实验中表现良好的水凝胶,也不能忽视人类和动物模型之间的差异 [51]。最后,水凝胶材料对疼痛的缓解是临床转化的关键,所以,建立评价椎间盘源性疼痛的动物模型以及良好的评判标准是十分重要的。

7. 总结

水凝胶材料具有独特的生物相容性、吸水性和细胞封装能力等理化学特征,在椎间盘再生修复研究中有重要意义。近年来,新材料、新技术的出现为水凝胶的设计提供了更广阔的视野,更多实用的水凝胶被研发出来。不仅弥补了传统水凝胶的力学弱点,还补充了生物活性成分以促进细胞增殖和分化。虽然目前基于水凝胶的治疗策略多局限于体内实验和动物实验,但随着椎间盘退变病理机制的深入研究和水凝胶材料的进一步发展,基于水凝胶的生物材料将成为椎间盘退变治疗的新策略。

参考文献

参考文献

[1] Hoy, D., March, L., Brooks, P., et al. (2014) The Global Burden of Low Back Pain: Estimates from the Global Burden of Disease 2010 Study. Annals of the Rheumatic Diseases, 73, 968-974.
https://doi.org/10.1136/annrheumdis-2013-204428
[2] Jensen, C.E., Riis, A., Petersen, K.D., et al. (2017) Economic Evaluation of an Implementation Strategy for the Management of Low Back Pain in General Practice. Pain, 158, 891-899.
https://doi.org/10.1097/j.pain.0000000000000851
[3] 胡宝阳, 杨学军. MicroRNA影响椎间盘退变过程的研究进展及可发展空间[J]. 中国组织工程研究, 2020, 24(21): 3372-3378.
[4] Deyo, R.A., Dworkin, S.F., Amtmann, D., et al. (2014) Focus Article: Report of the NIH Task Force on Research Standards for Chronic Low Back Pain. European Spine Journal, 23, 2028-2045.
https://doi.org/10.1007/s00586-014-3540-3
[5] Chou, R., Deyo, R., Friedly, J., et al. (2017) Nonpharmacologic Therapies for Low Back Pain: A Systematic Review for an American College of Physicians Clinical Practice Guideline. Annals of Internal Medicine, 166, 493-505.
https://doi.org/10.7326/M16-2459
[6] Ma, K., Zhuang, Z.G., Wang, L., et al. (2019) The Chinese Association for the Study of Pain (CASP): Consensus on the Assessment and Management of Chronic Nonspecific Low Back Pain. Pain Research & Management, 2019, Article ID: 8957847.
https://doi.org/10.1155/2019/8957847
[7] Li, L., He, Z.Y., Wei, X.W., et al. (2016) Recent Advances of Biomaterials in Biotherapy. Regenerative Biomaterials, 3, 99-105.
https://doi.org/10.1093/rb/rbw007
[8] Speer, J., Barcellona, M., Jing, L., et al. (2021) Integrin-Mediated Interactions with a Laminin-Presenting Substrate Modulate Biosynthesis and Phenotypic Expression for Cells of the Human Nucleus Pulposus. European Cells & Materials, 41, 793-810.
https://doi.org/10.22203/eCM.v041a50
[9] Chuah, Y.J., Peck, Y., Lau, J.E., et al. (2017) Hydrogel Based Cartilaginous Tissue Regeneration: Recent Insights and Technologies. Biomaterials Science, 5, 613-631.
https://doi.org/10.1039/C6BM00863A
[10] Russo, F., Hartman, R.A., Bell, K.M., et al. (2017) Biomechanical Evaluation of Transpedicular Nucleotomy with Intact Annulus Fibrosus. Spine, 42, e193-e201.
https://doi.org/10.1097/BRS.0000000000001762
[11] Fields, A.J., Ballatori, A., Liebenberg, E.C., et al. (2018) Contribution of the Endplates to Disc Degeneration. Current Molecular Biology Reports, 4, 151-160.
https://doi.org/10.1007/s40610-018-0105-y
[12] Sakai, D. and Grad, S. (2015) Advancing the Cellular and Molecular Therapy for Intervertebral Disc Disease. Advanced Drug Delivery Reviews, 84, 159-171.
https://doi.org/10.1016/j.addr.2014.06.009
[13] Zehra, U., Noel-Barker, N., Marshall, J., et al. (2019) Associations between Intervertebral Disc Degeneration Grading Schemes and Measures of Disc Function. Journal of Orthopaedic Research, 37, 1946-1955.
https://doi.org/10.1002/jor.24326
[14] Zheng, K. and Du, D. (2021) Recent Advances of Hydrogel-Based Biomaterials for Intervertebral Disc Tissue Treatment: A Literature Review. Journal of Tissue Engineering and Regenerative Medicine, 15, 299-321.
https://doi.org/10.1002/term.3172
[15] Knezevic, N.N., Mandalia, S., Raasch, J., et al. (2017) Treatment of Chronic Low Back Pain—New Approaches on the Horizon. Journal of Pain Research, 10, 1111-1123.
https://doi.org/10.2147/JPR.S132769
[16] Li, Y., Yang, H.Y. and Lee, D.S. (2021) Advances in Biodegradable and Injectable Hydrogels for Biomedical Applications. Journal of Controlled Release, 330, 151-160.
https://doi.org/10.1016/j.jconrel.2020.12.008
[17] Dimatteo, R., Darling, N.J. and Segura, T. (2018) In Situ Forming Injectable Hydrogels for Drug Delivery and Wound Repair. Advanced Drug Delivery Reviews, 127, 167-184.
https://doi.org/10.1016/j.addr.2018.03.007
[18] Choi, U.Y., Joshi, H.P., Payne, S., et al. (2020) An Injectable Hyaluronan-Methylcellulose (HAMC) Hydrogel Combined with Wharton’s Jelly-Derived Mesenchymal Stromal Cells (WJ-MSCs) Promotes Degenerative Disc Repair. International Journal of Molecular Sciences, 21, 7391.
https://doi.org/10.3390/ijms21197391
[19] Basu, S., Pacelli, S. and Paul, A. (2020) Self-Healing DNA-Based Injectable Hydrogels with Reversible Covalent Linkages for Controlled Drug Delivery. Acta Biomaterialia, 105, 159-169.
https://doi.org/10.1016/j.actbio.2020.01.021
[20] Iatridis, J.C., Michalek, A.J., Purmessur, D., et al. (2009) Localized Intervertebral Disc Injury Leads to Organ Level Changes in Structure, Cellularity, and Biosynthesis. Cellular and Molecular Bioengineering, 2, 437-447.
https://doi.org/10.1007/s12195-009-0072-8
[21] Buser, Z., Kuelling, F., Liu, J., et al. (2011) Biological and Biomechanical Effects of Fibrin Injection into Porcine Intervertebral Discs. Spine, 36, E1201-E1209.
https://doi.org/10.1097/BRS.0b013e31820566b2
[22] Guterl, C.C., Torre, O.M., Purmessur, D., et al. (2014) Characterization of Mechanics and Cytocompatibility of Fibrin-Genipin Annulus Fibrosus Sealant with the Addition of Cell Adhesion Molecules. Tissue Engineering Part A, 20, 2536-2545.
https://doi.org/10.1089/ten.tea.2012.0714
[23] Yang, J.J., Li, F., Hung, K.C., et al. (2018) Intervertebral Disc Needle Puncture Injury Can Be Repaired Using a Gelatin-Poly (γ-Glutamic Acid) Hydrogel: An In Vitro Bovine Biomechanical Validation. European Spine Journal, 27, 2631-2638.
https://doi.org/10.1007/s00586-018-5727-5
[24] Yang, J.J., Lin, Y.Y., Chao, K.H., et al. (2021) Gelatin-Poly (γ-Glutamic Acid) Hydrogel as a Potential Adhesive for Repair of Intervertebral Disc Annulus Fibrosus: Evaluation of Cytocompatibility and Degradability. Spine, 46, E243-E249.
https://doi.org/10.1097/BRS.0000000000003767
[25] Grunert, P., Borde, B.H., Towne, S.B., et al. (2015) Riboflavin Crosslinked High-Density Collagen Gel for the Repair of Annular Defects in Intervertebral Discs: An in Vivo Study. Acta Biomaterialia, 26, 215-224.
https://doi.org/10.1016/j.actbio.2015.06.006
[26] Borde, B., Grunert, P., et al. (2015) Injectable, High-Density Collagen Gels for Annulus Fibrosus Repair: An in Vitro Rat Tail Model. Journal of Biomedical Materials Research Part A, 103, 2571-2581.
https://doi.org/10.1002/jbm.a.35388
[27] Chik, T.K., Ma, X.Y., Choy, T.H., et al. (2013) Photochemically Crosslinked Collagen Annulus Plug: A Potential Solution Solving the Leakage Problem of Cell-Based Therapies for Disc Degeneration. Acta Biomaterialia, 9, 8128-3819.
https://doi.org/10.1016/j.actbio.2013.05.034
[28] Long, R.G., Rotman, S.G., Hom, W.W., et al. (2018) In Vitro and Biomechanical Screening of Polyethylene Glycol and Poly(trimethylene carbonate) Block Copolymers for Annulus Fibrosus Repair. Journal of Tissue Engineering and Regenerative Medicine, 12, e727-e736.
https://doi.org/10.1002/term.2356
[29] Vergroesen, P.P., Bochyn Ska, A.I., Emanuel, K.S., et al. (2015) A Biodegradable Glue for Annulus Closure: Evaluation of Strength and Endurance. Spine, 40, 622-628.
https://doi.org/10.1097/BRS.0000000000000792
[30] Wang, Y., Wang, X., Shang, J., et al. (2017) Repairing the Ruptured Annular Fibrosus by Using Type I Collagen Combined with Citric Acid, EDC and NHS: An in Vivo Study. European Spine Journal, 26, 884-893.
https://doi.org/10.1007/s00586-016-4898-1
[31] Distefano, T.J., Shmukler, J.O., Danias, G., et al. (2020) Development of a Two-Part Biomaterial Adhesive Strategy for Annulus Fibrosus Repair and ex Vivo Evaluation of Implant Herniation Risk. Biomaterials, 258, Article ID: 120309.
https://doi.org/10.1016/j.biomaterials.2020.120309
[32] Ray, C.D. (2002) The PDN Prosthetic Disc-Nucleus Device. European Spine Journal, 11, S137-S142.
https://doi.org/10.1007/s00586-002-0425-7
[33] 马远征, 薛海滨, 陈兴, 等. 人工髓核置换术治疗腰椎间盘病变的中远期随访结果[J]. 中华外科杂志, 2008(5): 350-353.
[34] Berlemann, U. and Schwarzenbach, O. (2009) An Injectable Nucleus Replacement as an Adjunct to Microdiscectomy: 2 Year Follow-Up in a Pilot Clinical Study. European Spine Journal, 18, 1706-1712.
https://doi.org/10.1007/s00586-009-1136-0
[35] Tschugg, A., Michnacs, F., Strowitzki, M., et al. (2016) A Prospective Multicenter Phase I/II Clinical Trial to Evaluate Safety and Efficacy of NOVOCART Disc plus Autologous Disc Chondrocyte Transplantation in the Treatment of Nucleotomized and Degenerative Lumbar Disc to Avoid Secondary Disease: Study Protocol for a Randomized Controlled Trial. Trials, 17, 108.
https://doi.org/10.1186/s13063-016-1239-y
[36] Colombier, P., Clouet, J., Boyer, C., et al. (2016) TGF-β1 and GDF5 Act Synergistically to Drive the Differentiation of Human Adipose Stromal Cells toward Nucleus Pulposus-Like Cells. Stem Cells, 34, 653-667.
https://doi.org/10.1002/stem.2249
[37] Miyamoto, T., Muneta, T., Tabuchi, T., et al. (2010) Intradiscal Transplantation of Synovial Mesenchymal Stem Cells Prevents Intervertebral Disc Degeneration through Suppression of Matrix Metalloproteinase-Related Genes in Nucleus pulposus Cells in Rabbits. Arthritis Research & Therapy, 12, R206.
https://doi.org/10.1186/ar3182
[38] Malonzo, C., Chan, S.C., Kabiri, A., et al. (2015) A Papain-Induced Disc Degeneration Model for the Assessment of Thermo-Reversible Hydrogel-Cells Therapeutic Approach. Journal of Tissue Engineering and Regenerative Medicine, 9, E167-E176.
https://doi.org/10.1002/term.1667
[39] Chen, P., Ning, L., Qiu, P., et al. (2019) Photo-Crosslinked Gelatin-Hyaluronic Acid Methacrylate Hydrogel-Committed Nucleus Pulposus-Like Differentiation of Adipose Stromal Cells for Intervertebral Disc Repair. Journal of Tissue Engineering and Regenerative Medicine, 13, 682-693.
https://doi.org/10.1002/term.2841
[40] Frith, J.E., Cameron, A.R., Menzies, D.J., et al. (2013) An Injectable Hydrogel Incorporating Mesenchymal Precursor Cells and Pentosan Polysulphate for Intervertebral Disc Regeneration. Biomaterials, 34, 9430-9440.
https://doi.org/10.1016/j.biomaterials.2013.08.072
[41] Francisco, A.T., Hwang, P.Y., Jeong, C.G., et al. (2014) Photocrosslinkable Laminin-Functionalized Polyethylene Glycol Hydrogel for Intervertebral Disc Regeneration. Acta Biomaterialia, 10, 1102-1111.
https://doi.org/10.1016/j.actbio.2013.11.013
[42] Kumar, D., Lyness, A., Gerges, I., et al. (2016) Stem Cell Delivery with Polymer Hydrogel for Treatment of Intervertebral Disc Degeneration: From 3D Culture to Design of the Delivery Device for Minimally Invasive Therapy. Cell Transplant, 25, 2213-2220.
https://doi.org/10.3727/096368916X692618
[43] Zeng, Y., Chen, C., Liu, W., et al. (2015) Injectable Microcryogels Reinforced Alginate Encapsulation of Mesenchymal Stromal Cells for Leak-Proof Delivery and Alleviation of Canine Disc Degeneration. Biomaterials, 59, 53-65.
https://doi.org/10.1016/j.biomaterials.2015.04.029
[44] Pan, Z., Sun, H., Xie, B., et al. (2018) Therapeutic Effects of Gefitinib-Encapsulated Thermosensitive Injectable Hydrogel in Intervertebral Disc Degeneration. Biomaterials, 160, 56-68.
https://doi.org/10.1016/j.biomaterials.2018.01.016
[45] Paglia, D.N., Singh, H., Karukonda, T., et al. (2016) PDGF-BB Delays Degeneration of the Intervertebral Discs in a Rabbit Preclinical Model. Spine, 41, E449-E458.
https://doi.org/10.1097/BRS.0000000000001336
[46] Li, Z., Lang, G., Karfeld-Sulzer, L.S., et al. (2017) Heterodimeric BMP-2/7 for Nucleus Pulposus Regeneration—In Vitro and ex Vivo Studies. Journal of Orthopaedic Research: Official Publication of the Orthopaedic Research Society, 35, 51-60.
https://doi.org/10.1002/jor.23351
[47] Zheng, Q., Shen, H., Tong, Z., et al. (2021) A Thermosensitive, Reactive Oxygen Species-Responsive, MR409-En- capsulated Hydrogel Ameliorates Disc Degeneration in Rats by Inhibiting the Secretory Autophagy Pathway. Theranostics, 11, 147-163.
https://doi.org/10.7150/thno.47723
[48] Feng, G., Zha, Z., Huang, Y., et al. (2018) Sustained and Bioresponsive Two-Stage Delivery of Therapeutic miRNA via Polyplex Micelle-Loaded Injectable Hydrogels for Inhibition of Intervertebral Disc Fibrosis. Advanced Healthcare Materials, 7, e1800623.
https://doi.org/10.1002/adhm.201800623
[49] Panebianco, C.J., Distefano, T.J., Mui, B., et al. (2020) Crosslinker Concentration Controls TGFβ-3 Release and Annulus Fibrosus Cell Apoptosis in Genipin-Crosslinked Fibrin Hydrogels. European Cells & Materials, 39, 211-226.
https://doi.org/10.22203/eCM.v039a14
[50] Lalitha Sridhar, S., Schneider, M.C., Chu, S., et al. (2017) Heterogeneity Is Key to Hydrogel-Based Cartilage Tissue Regeneration. Soft Matter, 13, 4841-4855.
https://doi.org/10.1039/C7SM00423K
[51] Reitmaier, S., Graichen, F., Shirazi-Adl, A., et al. (2017) Separate the Sheep from the Goats: Use and Limitations of Large Animal Models in Intervertebral Disc Research. The Journal of Bone and Joint Surgery American Volume, 99, e102.
https://doi.org/10.2106/JBJS.17.00172