HCN通道在癫痫中的作用
The Role of HCN Channels in Epilepsy
DOI: 10.12677/IJPN.2022.111001, PDF, HTML, XML, 下载: 400  浏览: 1,347 
作者: 叶浩楠:三峡大学国家中医药管理局中药药理科研三级实验室,湖北 宜昌;三峡大学医学院机能学系,湖北 宜昌;陆永利, 杨红卫*:三峡大学国家中医药管理局中药药理科研三级实验室,湖北 宜昌;三峡大学医学院机能学系,湖北 宜昌;三峡大学脑重大疾病研究所,湖北 宜昌
关键词: HCN通道癫痫TRIP8b突变HCN Channels Epilepsy TRIP8b Mutation
摘要: 癫痫是一种大脑神经元反复异常放电所致的短暂性脑功能障碍的慢性神经系统疾病。中枢神经系统兴奋性谷氨酸能与抑制性γ-氨基丁酸能神经递质间的平衡紊乱和促离子型受体等离子通道功能的改变可直接诱导癫痫发作。研究表明超极化激活的环核苷酸阳离子通道(Hyperpolarization activates cyclic nucleotidegated channels, HCN)具有兴奋和抑制两种不同的功能状态,HCN通道通过对膜电位、膜电阻和神经元兴奋性进行调节参与中枢神经系统疾病的病理生理过程。HCN通道突变、辅助亚基TRIP8b缺失和HCN通道抑制均与癫痫发作相关。本文将重点阐述HCN通道作用于癫痫的神经细胞和分子生物学机制,有助于更有效的对症治疗癫痫,并减少治疗的副作用,并为进一步研发新的抗癫痫药物的靶向干预治疗开辟新的途径和策略。
Abstract: Epilepsy is a chronic neurological disease characterized by a transient brain dysfunction due to repeated abnormal discharges of brain neurons. The imbalance between excitatory glutamate and inhibitory gamma-aminobutyric acid (GABA) neurotransmitter in the central nervous system and changes in ionic functions of ionotropic receptors directly induce epileptic seizures. Accumulating evidence suggests that hyperpolarization activates cyclic nucleotide-gated channels (HCN) have ex-citatory and inhibitory functional states. HCN channels are widely implicated in pathophysiological process of specific nervous diseases through regulating membrane potential and membrane resistance as well as excitability of neurons. Mutation, deletion of auxiliary subunit TRIP8b and inhibition of HCN channel were associated with epileptic seizures. This review focuses on the molecular and cellular mechanisms of the protective effect of HCN channel on epilepsy, which may help to treat the symptoms more effectively and reduce the side effects of treatment, aiming at providing new strategies and ideas of new antiepileptic drugs for the targeted intervention therapy of epilepsy.
文章引用:叶浩楠, 陆永利, 杨红卫. HCN通道在癫痫中的作用[J]. 国际神经精神科学杂志, 2022, 11(1): 1-6. https://doi.org/10.12677/IJPN.2022.111001

1. 前言

癫痫是一种以大脑神经元反复异常放电为特征的慢性神经系统疾病,临床症状多表现为身体痉挛和思维障碍 [1]。目前全球约有5000万癫痫患者,其中近80%的癫痫患者生活在低收入和中等收入国家,癫痫给患者及其家庭和社会造成了巨大的经济和心理影响 [2] [3]。当前癫痫的主要治疗方法是使用抗癫痫药物以减轻患者的部分临床症状,但仍有约30%的癫痫患者使用抗癫痫药物后没有明显治疗效果 [4]。因此,有必要寻找治疗癫痫的新方法。目前,癫痫发病的细胞和分子机制尚未完全阐明。但近年来越来越多的研究表明超极化激活的环核苷酸阳离子通道(hyperpolarization activates cyclic nucleotidegated channels, HCN)与人类癫痫发病密切相关,HCN通道有望成为预防和治疗癫痫的新的药物作用靶点 [5] [6]。因此,本文将总结HCN通道在癫痫中的作用及分子机制,旨在为HCN通道成为癫痫防治的有效作用药物靶点提供理论依据。

2. HCN突变与癫痫发病的关系

HCN通道是一种电压门控阳离子通道,在膜电位大于−50 mV时激活,主要对Na+和K+离子通透,并受环核苷酸的调节 [7]。HCN通道由HCN1~4基因家族编码四个亚型,其产生的电流Ih在控制细胞的兴奋性和其它电特性方面起着重要作用 [8] [9]。HCN通道的功能取决于其亚型的分布,不同神经元中的亚型有明显差异 [10]。HCN1主要在海马、新皮质和小脑皮质中表达 [11]。HCN2分布范围广,几乎表达于整个脑组织 [12] [13]。现有研究表明HCN3在下丘脑和嗅球中有少量表达,HCN4在丘脑、内侧缰核和基底神经节的部分特定神经元中高度表达 [13]。HCN通道在体内参与不同的生理过程,与大脑中自发放电密切相关 [14]。癫痫发病以大脑神经元反复异常放电为特征,但目前对其发病机制尚未完全阐明 [4]。HCN通道在神经元中广泛表达,并对大脑节律性活动有调控作用 [15]。现有研究表明HCN通道与人类癫痫发作密切相关,并在部分癫痫患者中发现了HCN1和HCN2突变 [15] [16]。由此看来,研究HCN1和HCN2突变对癫痫发病的影响可能为癫痫的理论研究提供新思路。

HCN1和HCN2广泛表达于中枢和外周神经系统,在树突整合、调控静息膜电位和动作电位中均发挥重要作用,其功能的增强或丧失与人类多种遗传性癫痫疾病有关 [17] [18]。在遗传性全身性癫痫、全面性癫痫伴热性惊厥附加症、癫痫性脑病、特发性全面性癫痫和小儿热性惊厥的患者中,已经发现了HCN1和HCN2突变 [16]。Marini等 [19] 通过对HCN1突变儿童的临床、电生理、遗传和功能数据进行分析,获得了从遗传性全身性癫痫到婴儿癫痫性脑病的HCN1突变相关表型谱,发现HCN1突变与癫痫的发病过程密切相关。来自动物模型的数据显示,缺失HCN1会增加皮质神经元树突的输入阻力,产生更大的突触整合和放电,进而诱导过度兴奋 [5] [20]。HCN1敲除小鼠出现了运动学习能力受损和癫痫发作阈值的改变,增加了对癫痫的易感性 [20]。HCN2敲除小鼠表现出失神性癫痫、震颤、频繁癫痫样棘波放电(spike-wave discharges, SWDs)、心脏节律障碍等症状,并对神经性和炎性疼痛敏感性降低 [17] [21]。Hammelmann等 [12] 建立了一个具有正常电压门控的HCN2通道突变的小鼠模型,发现小鼠两侧的丘脑核、外侧膝状体核和腹侧基底核出现受损的放电,而这些缺陷直接导致了癫痫的全身性发作。此外,癫痫的药理学动物模型显示,癫痫状态下持续诱导HCN通道的重塑会导致自发性癫痫的持久易感性 [5]。HCN通道在中枢神经系统中有重要的生理和病理生理作用,与癫痫发病密切相关 [15]。但是,以HCN1和HCN2突变与癫痫发作的关系为基础研发抗癫痫药物仍需更深入的研究。

3. HCN通道辅助亚基TRIP8b对不同癫痫发作的影响

3.1. TRIP8b对颞叶癫痫发作的影响

HCN通道辅助亚基TRIP8b与多种癫痫亚型相关,例如颞叶癫痫(temporal lobe epilepsy, TLE)和失神性癫痫 [22]。TRIP8b是由Pex51基因编码的脑特异性蛋白,为HCN通道神经元调节亚单位,能抑制HCN通道对环核苷酸依赖性 [23]。TRIP8b通过与环核苷酸结构域(cyclic nucleotide-binding domain, CNBD)相互作用并竞争cAMP结合来控制HCN门控通道 [24]。TRIP8b在海马锥体神经元的远端树突中与HCN1共同定位,敲除TRIP8b会显著破坏这种树突定位 [23]。已证实HCN1和HCN2亚型的突变和缺失与癫痫发作有关 [16]。因此,通过研究TRIP8b在HCN通道中的调控机制,可能为治疗癫痫提供一个新思路。

TLE是神经元异常放电导致中枢神经系统功能障碍的一种慢性神经系统疾病,影响了全球超过70%的耐药癫痫患者 [25]。Foote等 [26] 观察到大鼠TLE模型中Ser237磷酸化改变导致HCN通道功能障碍。研究表明,Ser237磷酸化减少导致海马体病变进而导致癫痫发作,但恢复TRIP8b残基Ser237的磷酸化可增强TLE中的Ih进而降低癫痫患者的神经元兴奋性 [26]。HCN1在某些神经元起搏活动中起着关键性作用,CA1锥体细胞中HCN1的下调可能会改变节律活动的发生 [27]。在实验性癫痫中观察到HCN1的减少,免疫学组织化学证实了CA1锥体神经元中HCN1的减少与TRIP8b的减少有关 [28]。此外,在啮齿动物模型中发现HCN1减少增强了神经元的兴奋性,进而增加了癫痫的易感性和死亡率 [16] [26]。此前已有研究证实CA1锥体细胞通道的错误定位与TRIP8b-HCN相互作用的破坏有关,这也增加了TLE中HCN通道功能失调是TRIP8b功能丧失所致的可能性 [26]。目前TRIP8b-HCN相互作用的分子机制尚不清楚,但恢复TRIP8b磷酸化可使CA1锥体细胞中HCN通道功能增强,降低癫痫患者的神经元兴奋性 [22]。因此,研究TRIP8b在TLE中的具体作用机制可能为治疗TLE提供新的理论依据。

3.2. TRIP8b对失神性癫痫发作的影响

失神性癫痫是一种短暂的非惊厥性发作,与意识突然中断和丘脑皮层网络的异常活动有关 [29]。主要特征是意识丧失、缺乏自主运动和广义SWDs [30] [31]。研究发现,部分失神性癫痫啮齿动物模型中的癫痫发病与其皮质和丘脑中HCN通道功能降低有关,并在人类患者和失神性癫痫发作的啮齿动物模型中发现了相同的药理学特征 [32] [33]。Heuermann等 [33] 发现使用γ-羟基丁酸内酯(γ-butyrolactone, GBL)后,TRIP8b敲除的小鼠相比野生型更易出现SWDs和死亡,这表明TRIP8b敲除的小鼠对药物诱导的失神性癫痫更易感。进一步研究发现,尽管TRIP8b在大脑中广泛表达,但TRIP8b主要通过影响Ih在失神性癫痫中发挥作用 [33]。例如,TRIP8b敲除小鼠中出现自发的SWDs的频率比包括HCN2通道缺失小鼠模型在内的其他小鼠模型更低 [33]。虽然在实验性癫痫动物模型发作后Ih会发生病理性改变,一些独立数据也能表明有缺陷HCN通道与不同形式的癫痫之间存在联系,但目前人类癫痫与有缺陷HCN通道功能变化的直接证据仍难以获得 [34]。总的来说,TRIP8b与人类失神性癫痫发作之间的具体机制仍需进一步研究。

4. HCN通道抑制与失神发作的关系

失神发作(Absence seizures, ASs)存在于多种不同形式的癫痫中,是儿童失神性癫痫的唯一临床特征,对患者造成的严重后果有注意力受损、情绪和社交障碍等 [31] [35]。研究发现,皮质和丘脑HCN通道的功能改变与ASs密切相关 [31]。但新皮质和丘脑神经元群中的HCN通道在非惊厥发作中的作用仍有争议,大脑皮层和丘脑中HCN通道在ASs中的选择作用尚未完全阐明 [36] [37]。当电压门控钠通道Scn8a在丘脑网状核中缺失时会促进癫痫发作,但在皮质神经元中缺失时可抑制癫痫的发生 [38]。这提示,阻断大脑不同部位的同一离子通道可能对癫痫发作具有相反的作用。此前,David等 [36] 基于两个不同背景物种的三种不同失神性癫痫动物模型,发现阻断丘脑的HCN通道可以通过减少丘脑皮质(thalamocortical, TC)细胞的放电来限制癫痫发作活动。Iacone等 [31] 给成熟大鼠模型的局部皮质和丘脑注射HCN通道阻断剂伊伐布雷定(ivabradine, IVA)后消除了遗传性的ASs。这表明,抑制TC神经元中HCN通道可能对ASs有一定的治疗效果。此后,对丘脑腹侧核中TC神经元的HCN通道进行药理学和遗传学阻断,同样发现了失神性癫痫发作显著减少,这进一步证明了阻断TC神经元HCN通道可以阻止药物性和遗传性的ASs [36]。总之,TC神经元HCN通道与ASs密切相关,阻断TC神经元中HCN通道可能成为研发抗ASs药物的靶点。

5. 总结

HCN通道具有兴奋和抑制两种不同的功能状态,可通过分子药理学和遗传学的方法对其进行修饰调节。由于HCN通道对膜电位、膜电阻和神经元兴奋性进行调节,HCN通道有望成为治疗神经精神疾病潜在的理想靶标。鉴于神经元HCN1和HCN2的突变、TRIP8b缺失和HCN通道的抑制均与癫痫密切相关,深入研究HCN通道对癫痫相关神经元放电功能的影响,可区分癫痫发作的类型和时期以便对其更好地干预,使其成为癫痫治疗的高效防治方法。此外通过更深入的理解HCN通道作用于癫痫大脑的神经分子和细胞生物学机制,有助于更有效的对症治疗先天性和后天性癫痫,并减少治疗的副作用,并为进一步研发新的抗癫痫药物的靶向干预治疗开辟新的途径和策略。

NOTES

*通讯作者。

参考文献

[1] Sun, M., Ruan, X., Li, Y., et al. (2021) Clinical Characteristics of 30 COVID-19 Patients with Epilepsy: A Retrospective Study in Wuhan. International Journal of Infectious Diseases, 103, 647-653.
https://doi.org/10.1016/j.ijid.2020.09.1475
[2] Lum, G.R., Olson, C.A. and Hsiao, E.Y. (2020) Emerging Roles for the Intestinal Microbiome in Epilepsy. Neurobiology of Disease, 135, Article ID: 104576.
https://doi.org/10.1016/j.nbd.2019.104576
[3] Li, J., Zhang, X., Li, N., et al. (2020) Mortality Rates in People with Convulsive Epilepsy in Rural Northeast China. Frontiers in Neurology, 11, Article No. 1013.
https://doi.org/10.3389/fneur.2020.01013
[4] Shao, Y. and Chen, Y. (2017) Pathophysiology and Clinical Utility of Non-Coding RNAs in Epilepsy. Frontiers in Molecular Neuroscience, 10, Article No. 249.
https://doi.org/10.3389/fnmol.2017.00249
[5] Bonzanni, M., DiFrancesco, J.C., Milanesi, R., et al. (2018) A Novel de Novo HCN1 Loss-of-Function Mutation in Genetic Generalized Epilepsy Causing Increased Neuronal Excita-bility. Neurobiology of Disease, 118, 55-63.
https://doi.org/10.1016/j.nbd.2018.06.012
[6] DiFrancesco, J.C. and DiFrancesco, D. (2015) Dysfunctional HCN Ion Channels in Neurological Diseases. Frontiers in Cellular Neuroscience, 6, Article No. 174.
https://doi.org/10.3389/fncel.2015.00071
[7] Lee, C.H. and MacKinnon, R. (2019) Voltage Sensor Movements during Hyperpolarization in the HCN Channel. Cell, 179, 1582-1589.e1587.
https://doi.org/10.1016/j.cell.2019.11.006
[8] Silbernagel, N., Walecki, M., Schafer, M.K., et al. (2018) The VAMP-Associated Protein VAPB Is Required for Cardiac and Neuronal Pacemaker Channel Function. FASEB Journal, 32, 6159-6173.
https://doi.org/10.1096/fj.201800246R
[9] Lyman, K.A., Han, Y. and Chetkovich, D.M. (2017) Animal Models Suggest the TRIP8b-HCN Interaction Is a Therapeutic Target for Major Depressive Disorder. Expert Opinion on Thera-peutic Targets, 21, 235-237.
https://doi.org/10.1080/14728222.2017.1287899
[10] Brennan, G.P., Baram, T.Z. and Poolos, N.P. (2016) Hy-perpolarization-Activated Cyclic Nucleotide-Gated (HCN) Channels in Epilepsy. Cold Spring Harbor Perspectives in Medicine, 6, a022384.
https://doi.org/10.1101/cshperspect.a022384
[11] Ni, L., Xu, Y., Dong, S., et al. (2020) The Potential Role of the HCN1 Ion Channel and BDNF-mTOR Signaling Pathways and Synaptic Transmission in the Alleviation of PTSD. Translational Psychiatry, 10, 101.
https://doi.org/10.1038/s41398-020-0782-1
[12] Hammelmann, V., Stieglitz, M.S., Hulle, H., et al. (2019) Abol-ishing cAMP Sensitivity in HCN2 Pacemaker Channels Induces Generalized Seizures. JCI Insight, 4, e126418.
https://doi.org/10.1172/jci.insight.126418
[13] Nakagawa, T., Yasaka, T., Nakashima, N., et al. (2020) Expression of the Pacemaker Channel HCN4 in Excitatory Interneurons in the Dorsal Horn of the Murine Spinal Cord. Molecular Brain, 13, 127.
https://doi.org/10.1186/s13041-020-00666-6
[14] Sartiani, L., Mannaioni, G., Masi, A., et al. (2017) The Hy-perpolarization-Activated Cyclic Nucleotide-Gated Channels: From Biophysics to Pharmacology of a Unique Family of Ion Channels. Pharmacological Reviews, 69, 354-395.
https://doi.org/10.1124/pr.117.014035
[15] Ramentol, R., Perez, M.E. and Larsson, H.P. (2020) Gating Mecha-nism of Hyperpolarization-Activated HCN Pacemaker Channels. Nature Communications, 11, Article No. 1419.
https://doi.org/10.1038/s41467-020-15233-9
[16] Lussier, Y., Furst, O., Fortea, E., et al. (2019) Disease-Linked Mutations Alter the Stoichiometries of HCN-KCNE2 Complexes. Scientific Reports, 9, Article No. 9113.
https://doi.org/10.1038/s41598-019-45592-3
[17] Tanguay, J., Callahan, K.M. and D’Avanzo, N. (2019) Charac-terization of Drug Binding within the HCN1 Channel Pore. Scientific Reports, 9, Article No. 465.
https://doi.org/10.1038/s41598-018-37116-2
[18] Chen, S.J., Xu, Y., Liang, Y.M., et al. (2019) Identification and Characterization of a Series of Novel HCN Channel Inhibitors. Acta Pharmaceutica Sinica, 40, 746-754.
https://doi.org/10.1038/s41401-018-0162-z
[19] Marini, C., Porro, A., Rastetter, A., et al. (2018) HCN1 Mutation Spectrum: From Neonatal Epileptic Encephalopathy to Benign Generalized Epilepsy and Beyond. Brain, 141, 3160-3178.
[20] Huang, Z., Walker, M.C. and Shah, M.M. (2009) Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis. Journal of Neuroscience, 29, 10979-10988.
https://doi.org/10.1523/JNEUROSCI.1531-09.2009
[21] Fisher, D.W., Luu, P., Agarwal, N., et al. (2018) Loss of HCN2 Leads to Delayed Gastrointestinal Motility and Reduced Energy Intake in Mice. PLoS ONE, 13, e0193012.
https://doi.org/10.1371/journal.pone.0193012
[22] Han, Y., Lyman, K.A., Foote, K.M., et al. (2020) The Structure and Function of TRIP8b, an Auxiliary Subunit of Hyperpolarization-Activated Cyclic-Nucleotide Gated Channels. Channels (Austin), 14, 110-122.
https://doi.org/10.1080/19336950.2020.1740501
[23] Bankston, J.R., DeBerg, H.A., Stoll, S., et al. (2017) Mech-anism for the Inhibition of the cAMP Dependence of HCN Ion Channels by the Auxiliary Subunit TRIP8b. Journal of Biological Chemistry, 292, 17794-17803.
https://doi.org/10.1074/jbc.M117.800722
[24] Porro, A., Binda, A., Pisoni, M., et al. (2020) Rational Design of a Mutation to Investigate the Role of the Brain Protein TRIP8b in Limiting the cAMP Response of HCN Channels in Neurons. Journal of General Physiology, 152, e202012596.
https://doi.org/10.1085/jgp.202012596
[25] Gu, P., Wu, T., Zou, M., et al. (2020) Multi-Head Self-Attention Model for Classification of Temporal Lobe Epilepsy Subtypes. Frontiers in Physiology, 11, Article ID: 604764.
https://doi.org/10.3389/fphys.2020.604764
[26] Foote, K.M., Lyman, K.A., Han, Y., et al. (2019) Phosphorylation of the HCN Channel Auxiliary Subunit TRIP8b Is Altered in an Animal Model of Temporal Lobe Epilepsy and Modulates Channel Function. Journal of Biological Chemistry, 294, 15743-15758.
https://doi.org/10.1074/jbc.RA119.010027
[27] Chan, C.S., Glajch, K.E., Gertler, T.S., et al. (2011) HCN Channelopathy in External Globus Pallidus Neurons in Models of Parkinson’s Disease. Nature Neuroscience, 14, 85-92.
https://doi.org/10.1038/nn.2692
[28] Frigerio, F., Flynn, C., Han, Y., et al. (2018) Neuroinflammation Al-ters Integrative Properties of Rat Hippocampal Pyramidal Cells. Molecular Neurobiology, 55, 7500-7511.
https://doi.org/10.1007/s12035-018-0915-1
[29] Jafarian, M., Esmaeil, A.M. and Karimzadeh, F. (2020) Experi-mental Models of Absence Epilepsy. Basic and Clinical Neuroscience, 11, 715-726.
https://doi.org/10.32598/bcn.11.6.731.1
[30] Kozak, G. (2019) Insights on the Role of Thalamocortical HCN Channels in Absence Epilepsy. Journal of Neuroscience, 39, 578-580.
https://doi.org/10.1523/JNEUROSCI.2063-18.2018
[31] Iacone, Y., Morais, T.P., David, F., et al. (2021) Sys-temic Administration of Ivabradine, a Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Inhibitor, Blocks Spontaneous Absence Seizures. Epilepsia, 62, 1729-1743.
https://doi.org/10.1111/epi.16926
[32] Chung, W.K., Shin, M., Jaramillo, T.C., et al. (2009) Absence Epilepsy in Apathetic, a Spontaneous Mutant Mouse Lacking the h Channel Subunit, HCN2. Neurobiology of Disease, 33, 499-508.
https://doi.org/10.1016/j.nbd.2008.12.004
[33] Heuermann, R.J., Jaramillo, T.C., Ying, S.W., et al. (2016) Reduc-tion of Thalamic and Cortical Ih by Deletion of TRIP8b Produces a Mouse Model of Human Absence Epilepsy. Neuro-biology of Disease, 85, 81-92.
https://doi.org/10.1016/j.nbd.2015.10.005
[34] DiFrancesco, J.C., Barbuti, A., Milanesi, R., et al. (2011) Recessive Loss-of-Function Mutation in the Pacemaker HCN2 Channel Causing Increased Neuronal Excitability in a Patient with Idiopathic Generalized Epilepsy. Journal of Neuroscience, 31, 17327-17337.
https://doi.org/10.1523/JNEUROSCI.3727-11.2011
[35] McCafferty, C., Connelly, W.M., Celli, R., et al. (2018) Genetic Rescue of Absence Seizures. CNS Neuroscience & Therapeutics, 24, 745-758.
https://doi.org/10.1111/cns.12858
[36] David, F., Carcak, N., Furdan, S., et al. (2018) Suppression of Hyperpolar-ization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Deter-mined and Pharmacologically Induced Absence Seizures. Journal of Neuroscience, 38, 6615-6627.
https://doi.org/10.1523/JNEUROSCI.0896-17.2018
[37] Noam, Y., Bernard, C. and Baram, T.Z. (2011) Towards an Integrated View of HCN Channel Role in Epilepsy. Current Opinion in Neurobiology, 21, 873-879.
https://doi.org/10.1016/j.conb.2011.06.013
[38] Makinson, C.D., Tanaka, B.S., Sorokin, J.M., et al. (2017) Regu-lation of Thalamic and Cortical Network Synchrony by Scn8a. Neuron, 93, 1165-1179.e1166.
https://doi.org/10.1016/j.neuron.2017.01.031