维生素D与感染性疾病研究进展
Advances in Vitamin D and Infectious Diseases
DOI: 10.12677/ACM.2022.123233, PDF, HTML, XML, 下载: 325  浏览: 554 
作者: 王 银, 姜 泓*:延安大学附属医院新生儿科,陕西 延安
关键词: 维生素D感染性疾病Vitamin D Infectious Diseases
摘要: 维生素D是一种脂溶性类固醇激素,不仅参与人体钙磷代谢,维持骨骼健康,而且还具有免疫调节作用,影响多种感染性疾病的发生、发展。该文简要介绍维生素D营养状况与儿童感染性疾病的相关性。
Abstract: Vitamin D is a fat-soluble steroid hormone, which not only participates in the metabolism of calcium and phosphorus in human body to maintain bone health, but also plays an immunomodulatory role and affects the occurrence and development of various infectious diseases. This article briefly introduces the relationship between vitamin D nutritional status and infectious diseases in children.
文章引用:王银, 姜泓. 维生素D与感染性疾病研究进展[J]. 临床医学进展, 2022, 12(3): 1623-1628. https://doi.org/10.12677/ACM.2022.123233

1. 引言

维生素D (vitamin D, VD)对于维持人类生命和健康至关重要。据报道,全世界存在VD缺乏或不足约有10亿人 [1] ,由于儿童生长速度快、户外活动少、饮食VD摄入量不足等因素,VD缺乏的风险很高 [2] 。VD除调节钙磷代谢外,研究还发现VD不足或缺乏与自身免疫性疾病、感染性疾病、肿瘤、心血管疾病等的发生有关 [3] 。儿童的免疫系统尚未完全发育,对感染性疾病抵抗力弱,极易受病原体的侵袭而患病。因此,本文将对VD与儿童感染性疾病作一综述。

2. VD代谢

VD是一种类固醇激素,人体VD主要来源于皮肤经紫外线照射生成 [4] ,少量VD从食物获得。进入血液循环的VD与维生素D结合蛋白(vitamin D binding protein, DBP)相结合,首先被运送至肝脏,在25-羟化酶下生成25-羟维生素D3[25(OH)D3],而后25(OH)D3被运送至肾脏,在lα-羟化酶的作用下生成有活性的1,25-二羟维生素D3[1,25-(OH)2D3],后者通过与细胞核上的维生素D受体(vitamin D receptor, VDR)结合,启动并调控钙结合蛋白基因的转录,进而在人体各器官组织中发挥生物效应,包括维持体内钙磷代谢平衡、调节免疫反应等 [5] 。25(OH)D在血液中有着最长的半衰期、水平最稳定且浓度最高,因此,目前国际学者已经公认,血液中25(OH)D的水平是反应体内VD营养状况的最佳指标 [6] 。

3. VD与儿童常见感染性疾病的相关性

3.1. 呼吸道感染

呼吸道感染是儿童发病和死亡最常见的疾病。Jachvadze等 [7] 对277名3个月~15岁儿童调查显示,25(OH)D缺乏与呼吸道感染高发病率有关。Berry等 [8] 研究发现,25(OH)D每增加10 nmol/l,呼吸道感染风险降低7%。另一项随机对照试验显示,1300名健康儿童或青少年被随机分为维生素D组(每周口服14,000 U)和安慰剂组,治疗8个月后,VD组各种呼吸道病毒感染率比安慰剂组低19% (HR = 0.81, 95% CI 0.66~0.99),但流感的发生率并没有减少 [9] 。Li等 [10] 对3天~14岁1582名儿童研究发现,25(OH)D水平与社区获得性肺炎患儿症状严重程度有关,25(OH)D水平越低,症状越严重,且25(OH)D水平低下也与接受机械通气和出现多器官功能障碍的风险较高有关。来自埃及的一项随机双盲对照试验显示,191名被诊断为肺炎的儿童被分为安慰剂组(接受抗菌药物治疗)和干预组(抗菌药物治疗基础上单次注射10万单位的维生素D3),7天后发现补充VD可以降低死亡风险,缩短疾病恢复时间,改善PaO2/FiO2 [11] 。而Choudhary等 [12] 对2~5岁患有重症肺炎的儿童研究发现,短期补充VD并不能缩短重症肺炎的缓解时间及住院时间。出现这些研究结果差异的原因,可能与VD的补充剂量、疾病的严重程度不同等因素有关。因此,VD水平低下与发生呼吸道感染具有一定的相关性,而补充VD对于防治呼吸道感染仍需要更深入的研究。

3.2. 消化道感染

感染性腹泻发病率仅次于呼吸系统感染 [13] 。据调查,全世界每年有近400万儿童的死于感染性腹泻,我国学龄前儿童感染性腹泻发生率约4.76%,死亡率约0.51% [14] ,故积极防治感染性腹泻对儿童生长、发育有着重要的意义。Bucak等 [15] 对轮状病毒腹泻儿童进行病例对照研究发现,轮状病毒腹泻患儿的VD水平明显低于健康对照组患儿(P < 0.001)。黄伟等 [16] 研究显示,25(OH)D水平与急性腹泻患儿的疾病严重程度有关,25(OH)D水平越低,患儿的病情越严重,表明25(OH)D检测对患儿的预后有一定的预测价值。另有季松茂等 [17] 研究显示,对急性腹泻患儿在对症治疗的基础上补充VD可提高治疗效果,且安全性好。研究表明,VD在保护肠黏膜上皮细胞的结构完整性及免疫功能的维持方面有着重要的作用 [18] [19] ,这可能是VD水平低下的患儿容易发生腹泻的原因之一。

3.3. 泌尿系感染

泌尿系感染也称尿路感染,儿童由于身体发育不完全,抵抗力差,因此患此病的风险也较高。抗菌肽是一种小分子多肽,不仅具有抗菌活性,还具有免疫调节作用。Kim等 [20] 研究发现,VD和cathelicidin相关抗菌肽(cathelicidin-related antimicrobial peptide, CAMP)的表达机制有潜在的联系,VD的反应元件存在于CAMP基因的启动子区域,该区域结合受体后,其转录起始效能显著提高CAMP基因的表达(P < 0.01)。研究也发现,VD水平与血清中cathelicidin水平存在正相关 [21] 。一项病例对照研究发现 [22] ,尿路感染儿童的VD明显低于健康儿童(P < 0.001)。另一项前瞻性研究显示 [23] ,尿路感染儿童VD不足或缺乏的患病率显著高于健康儿童(P < 0.01),且反复尿路感染儿童的VD水平明显低于首次尿路感染儿童(P = 0.04),提示VD水平与儿童尿路感染的发生及预后有关。

3.4. 脓毒症

目前研究表明VD通过调节免疫系统及调节机体炎症反应等在脓毒症的发生、发展中发挥着重要作用 [24] 。感染是脓毒症最主要的发病原因,而VD缺乏或不足与感染的发生有关。M等 [25] 对522例入住PICU的儿童进行分析,发现25(OH)D缺乏者占29.3%,其中有51%的脓毒症来自于VD缺乏的患儿。一项纳入13项研究的荟萃分析 [26] 也显示,有VD缺乏的儿童患脓毒症的风险增加,提示了VD水平与脓毒症的发生具有相关性。一项随机对照试验 [27] 显示,对109例入住PICU有VD缺乏的脓毒症儿童被分为治疗组(单次注射5%葡萄糖3 mL,含15万IU胆钙化醇)和安慰剂组,治疗后第8天治疗组TNF-α、IL-6水平明显低于安慰剂组(P均<0.05),且感染性休克发生率显著低于安慰剂组(P < 0.05),表明补充VD能够控制炎症反应,改善病情。

3.5. 其他感染性疾病

VD与结核病、中耳炎及手足口病的发病也有关。研究显示,85.3%的结核病儿童存在VD不足或缺乏 [28] ,结核可能会进一步导致VD的缺乏 [29] 。一项前瞻性研究显示,反复发作中耳炎儿童VD水平明显低于健康儿童,补充VD1年后,中耳炎的复发率显著降低 [30] ,表明在常规治疗的基础上补充VD可改善中耳炎的预后。Dang等 [31] 研究显示,危重症手足口病患儿血清25(OH)D水平明显降低,且25(OH)D浓度与疾病的严重程度及病死率呈负相关,提示血清25(OH)D浓度对判断手足口病的病情进展和预测死亡风险有一定的临床价值。

4. VD抗感染机制

VD通过与免疫细胞上的VDR结合发挥对固有免疫及适应性免疫的调节作用 [32] [33] 。VDR分为膜受体(mVDR)和核受体(nVDR) [34] 。1,25-(OH)2D与mVDR结合,通过诱导磷酸肌醇3-激酶(PI3K)传导通路活化调节免疫反应;与nVDR结合后,激活参与基因的调控与表达的配体依赖性转录因子复合体 [35] 。

在先天性免疫应答反应中,VD通过使cathelicidin抗菌肽基因表达发挥抗菌作用 [35] ,研究表明,cathelicidin及其类似物能够破坏或抑制耐药细菌的生物膜,而VD能对这一作用有加强作用 [36] 。在获得性免疫应答反应中,VD通过调节树突状细胞(DC)及T细胞等靶细胞起到抗感染作用。体外研究发现,活性VD可抑制单核细胞向DC的分化,并减少促炎细胞因子IL-12的产生,增加抗炎细胞因子IL-10的产生,抑制幼稚DC的成熟和分化,诱导出具有免疫耐受特点的未成熟细胞,促进损伤性T淋巴细胞向调节性T淋巴细胞转变 [37] [38] 。VD还可促进一氧化氮(NO)的合成,研究显示,与镀银或抗生素涂层导尿管相比,NO充气的导尿管能更有效的阻碍官腔及表面细菌生物膜生成,抑制细菌的繁殖 [39] ,表明NO对保护宿主抵抗病原体入侵有着重要作用。而VDR与配体结合,可使内皮源性一氧化氮合酶活性提高,促进NO合成 [40] [41] 。

5. 小结展望

综上所述,VD不仅调节钙、磷代谢,而且具有免疫调节作用,与儿童感染性疾病的发生、发展有着密切的联系,因此,儿童保持良好的VD状态,对于预防感染性疾病的发生是有益的,而补充VD对于防治儿童感染性疾病,仍需要大样本的前瞻性临床对照研究证实,从而为临床提供更多的理论依据。

NOTES

*通讯作者Email: yiyunshanxi@126.com

参考文献

[1] Holick, M.F. (2007) Vitamin D Deficiency. New England Journal of Medicine, 357, 266-281.
https://doi.org/10.1056/NEJMra070553
[2] 郑双双, 詹建英, 朱冰泉, 邵洁. 中国儿童维生素D营养状况流行病学研究进展[J]. 中华儿科杂志, 2019, 57(3): 232-234.
[3] Rejnmark, L., Bislev, L.S., Cashman, K.D., Eiríksdottir, G., Gaksch, M., Grübler, M., et al. (2017) Non-Skeletal Health Effects of Vitamin D Supplementation: A Systematic Review on Findings from Meta-Analyses Summarizing Trial Data. PLoS ONE, 12, e0180512.
https://doi.org/10.1371/journal.pone.0180512
[4] Tsoukas, C.D., Provvedini, D.M. and Manolagas, S.C. (1984) 1,25-Dihydroxyvitamin D3: A Novel Immunoregulatory Hormone. Science, 224, 1438-1440.
https://doi.org/10.1126/science.6427926
[5] Ransohoff, R.M. (2012) Perspective: Let the Sunshine in! Nature, 484, S8.
https://doi.org/10.1038/nature11106
[6] Bouillon, R. and Carmeliet, G. (2018) Vitamin D Insufficiency: Definition, Diagnosis and Management. Best Practice & Research Clinical Endocrinology & Metabolism, 32, 669-684.
https://doi.org/10.1016/j.beem.2018.09.014
[7] Jachvadze, M., Shanidze, L., Gubelidze, N. and Gogberashvili, K. (2021) Vitamin D Status among Georgian Children with High Acute Respiratory Morbidity. Georgian Medical News, No. 314, 95-99.
[8] Berry, D.J., Hesketh, K., Power, C. and Hyppönen, E. (2011) Vitamin D Status Has a Linear Association with Seasonal Infections and Lung Function in British Adults. British Journal of Nutrition, 106, 1433-1440.
https://doi.org/10.1017/S0007114511001991
[9] Loeb, M., Dang, A.D., Thiem, V.D., Thanabalan, V., Wang, B., Nguyen, N.B., et al. (2019) Effect of Vitamin D Supplementation to Reduce Respiratory Infections in Children and Adolescents in Vietnam: A Randomized Controlled Trial. Influenza and Other Respiratory Viruses, 13, 176-183.
https://doi.org/10.1111/irv.12615
[10] Li, W., Cheng, X., Guo, L., Li, H., Sun, C., Cui, X., et al. (2018) Association between Serum 25-Hydroxyvitamin D Concentration and Pulmonary Infection in Children. Medicine, 97, e9060.
https://doi.org/10.1097/MD.0000000000009060
[11] Labib, J.R., Ibrahem, S.K., Ismail, M.M., Fatah, S.A.M.A.E., Sedrak, A.S., Attia, M.A.S., et al. (2021) Vitamin D Supplementation and Improvement of Pneumonic Children at a Tertiary Pediatric Hospital in Egypt: A Randomized Controlled Trial. Medicine, 100, e25011.
https://doi.org/10.1097/MD.0000000000025011
[12] Choudhary, N. and Gupta, P. (2012) Vitamin D Supplementation for Severe Pneumonia—A Randomized Controlled Trial. Indian Pediatrics, 49, 449-454.
https://doi.org/10.1007/s13312-012-0073-x
[13] 邹玮. 感染性腹泻患儿血清25羟基维生素D表达与免疫功能的关系[J]. 中国临床医生杂志, 2021, 49(2): 235-238.
[14] 胡玲, 王宝香, 梅红, 赵玉霞. 小儿感染性腹泻临床特征与病原菌分布及耐药性分析[J]. 中华医院感染学杂志, 2019, 29(14): 2237-2240.
[15] Bucak, I.H., Ozturk, A.B., Almis, H., Cevik, M.Ö., Tekin, M., Konca, Ç., et al. (2016) Is There a Relationship between Low Vitamin D and Rotaviral Diarrhea? Pediatrics International, 58, 270-273.
https://doi.org/10.1111/ped.12809
[16] 黄伟, 夏明月, 李明丽, 刘灵. 急性腹泻患儿血清25-羟维生素D与炎性细胞因子水平的关系[J]. 山东医药, 2017, 57(10): 58-59.
[17] 季松茂, 谢月娟, 徐振兴. 维生素D对急性腹泻患儿血清25(OH)D与炎症因子水平的影响[J]. 中国热带医学, 2017, 17(11): 1138-1140+1144.
[18] Cantorna, M.T., Snyder, L. and Arora, J. (2019) Vitamin A and Vitamin D Regulate the Microbial Complexity, Barrier Function, and the Mucosal Immune Responses to Ensure Intestinal Homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 54, 184-192.
https://doi.org/10.1080/10409238.2019.1611734
[19] Barbáchano, A., Fernández-Barral, A., Ferrer-mayorga, G., Costales-Carrera, A., Larriba, M.J. and Muñoz, A. (2017) The Endocrine Vitamin D System in the Gut. Molecular and Cellular Endocrinology, 453, 79-87.
https://doi.org/10.1016/j.mce.2016.11.028
[20] Kim, E.W., Teles, R.M.B., Haile, S., Liu, P.T. and Modlin, R.L. (2018) Vitamin D Status Contributes to the Antimicrobial Activity of Macrophages against Mycobacterium leprae. PLOS Neglected Tropical Diseases, 12, e0006608.
https://doi.org/10.1371/journal.pntd.0006608
[21] Georgieva, V., Kamolvit, W., Herthelius, M., Lüthje, P., Brauner, A. and Chromek, M. (2019) Association between Vitamin D, Antimicrobial Peptides and Urinary Tract Infection in Infants and Young Children. Acta Paediatrica, 108, 551-556.
https://doi.org/10.1111/apa.14499
[22] Mahmoudzadeh, H., Nikibakhsh, A.A., Pashapour, S. and Ghasemnejad-Berenji, M. (2020) Relationship between Low Serum Vitamin D Status and Urinary Tract Infection in Children: A Case-Control Study. Paediatrics and International Child Health, 40, 181-185.
https://doi.org/10.1080/20469047.2020.1771244
[23] Muntean, C. and Săsăran, M. (2021) Vitamin D Status and Its Role in First-Time and Recurrent Urinary Tract Infections in Children: A Case-Control Study. Children, 8, Article No. 419.
https://doi.org/10.3390/children8050419
[24] 杨晨, 刘瑜, 万文辉. 维生素D在脓毒症中的作用及机制[J]. 中华危重病急救医学, 2019, 31(9): 1170-1173.
[25] Kiran Kumar, M., Das, S., Biswal, N., Parameswaran, N. and Nanda, N. (2020) Vitamin D Status at Admission and Its Association with Mortality in Children Admitted to the Pediatric Intensive Care Unit. Cureus, 12, e8413.
https://doi.org/10.7759/cureus.8413
[26] Xiao, D., Zhang, X., Ying, J., Zhou, Y., Li, X., Mu, D., et al. (2020) Association between Vitamin D Status and Sepsis in Children: A Meta-Analysis of Observational Studies. Clinical Nutrition, 39, 1735-1741.
https://doi.org/10.1016/j.clnu.2019.08.010
[27] Wang, Y., Yang, Z., Gao, L., Cao, Z. and Wang, Q. (2020) Effects of a Single Dose of Vitamin D in Septic Children: A Randomized, Double-Blinded, Controlled Trial. Journal of International Medical Research, 48, Article ID: 300060520926890.
https://doi.org/10.1177/0300060520926890
[28] Shah, I., Tolani, D., Bansal, N. and Shetty, N.S. (2019) Vitamin D Status in Children with Tuberculosis. The Indian Journal of Pediatrics, 86, 1146.
https://doi.org/10.1007/s12098-019-03034-y
[29] Gou, X., Pan, L., Tang, F., Gao, H. and Xiao, D. (2018) The Association between Vitamin D Status and Tuberculosis in Children: A Meta-Analysis. Medicine, 97, e12179.
https://doi.org/10.1097/MD.0000000000012179
[30] Cayir, A., Turan, M.I., Ozkan, O., Cayir, Y., Kaya, A., Davutoglu, S., et al. (2014) Serum Vitamin D Levels in Children with Recurrent Otitis Media. European Archives of Oto-Rhino-Laryngology, 271, 689-693.
https://doi.org/10.1007/s00405-013-2455-7
[31] Dang, H.X., Liu, C.J., Li, J., Chen, S.-J. and Xu, F. (2017) Clinical Significance and Prognostic Effect of Serum 25-Hydroxyvitamin D Concentrations in Critical and Severe Hand, Foot and Mouth Disease. Nutrients, 9, Article No. 478.
https://doi.org/10.3390/nu9050478
[32] Dankers, W., Colin, E.M., van Hamburg, J.P. and Lubberts, E. (2016) Vitamin D in Autoimmunity: Molecular Mechanisms and Therapeutic Potential. Frontiers in Immunology, 7, Article No. 697.
https://doi.org/10.3389/fimmu.2016.00697
[33] Hewison, M. (2012) An Update on Vitamin D and Human Immunity. Clinical Endocrinology, 76, 315-325.
https://doi.org/10.1111/j.1365-2265.2011.04261.x
[34] White, J.H. (2012) Vitamin D metabolism and Signaling in the Immune System. Reviews in Endocrine and Metabolic Disorders, 13, 21-29.
https://doi.org/10.1007/s11154-011-9195-z
[35] Abhimanyu and Coussens, A.K. (2017) The Role of UV Radiation and Vitamin D in the Seasonality and Outcomes of Infectious Disease. Photochemical & Photobiological Sciences, 16, 314-338.
https://doi.org/10.1039/C6PP00355A
[36] Guo, Y.J., Zhang, B., Feng, X.S., Ren, H.X. and Xu, J.R. (2017) Retraction Note: Human Cathelicidin LL-37 Enhance the Antibiofilm Effect of EGCG on Streptococcus mutans. BMC Oral Health, 17, Article No. 102.
https://doi.org/10.1186/s12903-017-0392-3
[37] Vanherwegen, A.S., Eelen, G., Ferreira, G.B., Ghesquière, B., Cook, D.P., Nikolic, T., et al. (2019) Vitamin D Controls the Capacity of Human Dendritic Cells to Induce Functional Regulatory T Cells by Regulation of Glucose Metabolism. The Journal of Steroid Biochemistry and Molecular Biology, 187, 134-145.
https://doi.org/10.1016/j.jsbmb.2018.11.011
[38] Xie, Z., Chen, J., Zheng, C., Wu, J., Cheng, Y., Zhu, S., et al. (2017) 1,25-Dihydroxyvitamin D3-Induced Dendritic Cells Suppress Experimental Autoimmune Encephalomyelitis by Increasing Proportions of the Regulatory Lymphocytes and Reducing T Helper Type 1 and Type 17 Cells. Immunology, 152, 414-424.
https://doi.org/10.1111/imm.12776
[39] Margel, D., Mizrahi, M., Regev-Shoshani, G., Ko, M., Moshe, M., Ozalvo, R, et al. (2017) Nitric Oxide Charged Catheters as a Potential Strategy for Prevention of Hospital Acquired Infections. PLoS ONE, 12, e0174443.
https://doi.org/10.1371/journal.pone.0174443
[40] Kim, D.H., Meza, C.A., Clarke, H., Kim, J.-S. and Hickner, R.C. (2020) Vitamin D and Endothelial Function. Nutrients, 12, Article No. 575.
https://doi.org/10.3390/nu12020575
[41] Panda, S., Tiwari, A., Luthra, K., Sharma, S.K and Singh, A. (2019) Status of Vitamin D and the Associated Host Factors in Pulmonary Tuberculosis Patients and Their Household Contacts: A Cross Sectional Study. The Journal of Steroid Biochemistry and Molecular Biology, 193, Article ID: 105419.
https://doi.org/10.1016/j.jsbmb.2019.105419