大气二氧化碳浓度升高下丛枝菌根真菌对植物生长发育影响的研究与展望
Research and Prospect of Arbuscular Mycorrhizal Fungi on Plant Growth and Development under Elevated Atmospheric Carbon Dioxide Concentration
DOI: 10.12677/BR.2022.113035, PDF, HTML, XML, 下载: 269  浏览: 558 
作者: 孙颖盈, 王欣雨, 祝晨琳:浙江师范大学,化学与生命科学学院,浙江 金华
关键词: 丛枝菌根真菌共生植物生长环境修复生态系统恢复Arbuscular Mycorrhizal Fungi Symbiosis Plant Growth Environmental Restoration Ecosystem Restoration
摘要: 丛枝菌根(Arbuscular Mycorrhiza, AM)真菌,能够与80%以上的陆生高等植物根系形成有益共生体,调控退化生态系统的恢复与重建。文中综述国内外有关AM真菌与二氧化碳(CO2)之间相互作用的主要研究成果,AM真菌共生与CO2之间的相互作用对植物吸收营养物质以及土壤环境的影响,揭示AM真菌调控植物生长与环境修复的微生物机制,并提出当前研究存在的问题及今后研究的建议,展望AM真菌在全球气候变化形式下的研究与应用,旨在为退化生态系统恢复重建提供一个新的理论视角,并为加快AM真菌这一高效生物技术的应用提供帮助。
Abstract: Arbuscular mycorrhiza (AM) fungi can form beneficial symbionts with more than 80% of the roots of terrestrial higher plants, regulating the restoration and reconstruction of degraded ecosystems. This paper reviews the main research achievements on the interaction between AM fungi and carbon dioxide at home and abroad, the effect of the interaction between AM fungi symbiosis and CO2 on plant uptake of nutrients and soil environment, and reveals the microorganisms that AM fungi regulate plant growth and environmental remediation. Mechanism, and put forward the existing problems in current research and suggestions for future research, and prospect the research and application of AM fungi in the form of global climate change, aiming to provide a new theoretical perspective for the restoration and reconstruction of degraded ecosystems, and to accelerate the development of AM fungi. The application of high-efficiency biotechnology can help.
文章引用:孙颖盈, 王欣雨, 祝晨琳. 大气二氧化碳浓度升高下丛枝菌根真菌对植物生长发育影响的研究与展望[J]. 植物学研究, 2022, 11(3): 299-305. https://doi.org/10.12677/BR.2022.113035

1. 引言

截止到2022年1月,大气二氧化碳(ACO2)已达到417.99 ppm,预计到本世纪末,ACO2将超过550 ppm (https://www.CO2.earth)。升高的CO2 (eCO2)浓度直接影响植物光合作用。丛枝菌根(Arbuscular Mycorrhizal, AM)真菌在自然界中分布广泛,可与植物根系共生形成共生体—菌根。在全球范围内,每年从植物到菌根共生体转移的碳水化合物和脂肪酸高达50亿吨 [1],是对土壤碳储量的重要投入。作为回报,AM真菌的定植可以提高寄主植物的适应性,特别是向植物提供额外的磷(P) [2] [3] 氮(N)和锌(Zn) [4]。菌根是由宿主植物根系和菌根真菌双方所构成的,菌根共生体对CO2浓度升高所作出的响应取决于双方各自的特点,所以对于不同的植物与菌根组合来说结果往往很不一致 [5]。其中共生促进可能是由于ACO2浓度升高促进了植物的光合作用,因此宿主植物向地下部分转移的光合产物增加,从而刺激了菌根的活性。 [6]

“碳肥效应”是导致ACO2升高下碳固定率增加的原因,尤其是在温带地区的C3物种中 [7],其中包括一些世界上最具经济和社会意义的植物。由于光合作用目前在ACO2下不受碳限制,因此在eCO2下生长的植物通常表现出减少的光呼吸损失和增加的净光合速率。ACO2增加对作物-AM真菌关联的影响程度尚不清楚。鉴于ACO2在调节光合速率 [8] 和随后的碳代谢中的关键作用,AM真菌如何改善和驱动ACO2的变化对作物生长和营养的影响值得进一步研究。本文对国内外有关ACO2浓度升高影响植物-AM真菌共生的研究报道进行简要概述。

2. CO2的升高对AM真菌侵染的影响

大量研究表明,eCO2对大部分C3植物具有显著的积极作用,因为它刺激了光合C的同化,从而增加了光合产物向菌根共生植物的根的转移,支持其共生关系 [9] [10] [11]。AM的形成通常增加了在eCO2 [12] [13] [14] 作用下寄主植物的叶片、茎和根生物量的产生。

Shi S等 [15] 发现升高的CO2浓度显著增加了F. mosseae对蚕豆(Vicia faba)的菌根定植率。苑学霞等 [16] 采用水稻(Oryza sativa L.)、冬小麦(Triticum aestivum L.)轮作的耕作方式和FACE (Free-air CO2 enrichment)开放试验系统,结果表明在前6周时间内,侵染率逐渐增加,6周时都达到30%以上,从第6周到第10周菌根侵染率基本保持不变。但与对照组相比CO2浓度升高对AM真菌的侵染能力没有显著影响。苑学霞等 [17] 在另一项试验中利用试验室CO2培养箱模拟CO2浓度倍增环境,初步研究了CO2浓度倍增对AM真菌Glomus caledonium Nicoison & Gerdemann及其对绿豆(Phaseolus radiatus L.)接种效应的影响。结果表明,绿豆生长14 d时,CO2浓度倍增对AM真菌及绿豆生长没有显著影响。绿豆生长28 d和42 d后,CO2浓度倍增显著增加了AM真菌的侵染率和产菌丝量;O’Neill等 [18] 试验结果表明CO2浓度升高使北美鹅掌楸(Liriodendron tulipifera)根部菌根总的侵染量随着时间稳定增加。姚凯骞 [19] 的研究发现通过CO2加富能够提高番茄根系菌根真菌的侵染率以及侵染密度。Roughier和Read [20] 的研究发现在CO2浓度升高条件下,长叶车前(Plantago lanceolata)在试验的第104天与第76天相比菌根真菌侵染率提高50%。汪杏芬等 [21] 使用开顶式CO2加倍装置对玉米(Zea mays L.)“农大3138”、小麦(Triticum aestiv um L.)“青323”、大豆(Glycine max L.)“科农4号”进行试验,实验结果表明玉米中侵染强度被显著促进,活力则无显著改变。在小麦中泡囊–丛枝菌根(VAM)侵染活力和强度均显著增加,这可能与C3植物总体而言对CO2浓度倍增更敏感有关。同为C3植物的大豆则表现出菌根侵染活力和强度对CO2浓度加倍的不敏感性。Staddon [22] 研究了CO2浓度升高对长叶车前和白花三叶草菌根影响结果表明菌根真菌侵染率以及外生菌丝密度增加。

上述研究表明不同碳途径植物对ACO2浓度变化的响应不同。AM真菌与大多数植物相互作用,比其他真菌的耐寒性更低;因此,ACO2浓度升高导致的气候变化可能使真菌介导的增加营养物质转移到植物上,可以加强互惠关系。通过刺激光合作用,CO2值的上升可以降低支持AM真菌的碳成本,这也可以加强互惠共生 [23]。未来气候变化时,在VAM侵染的植物类型中,C3非豆科植物的菌根因其侵染活力和强度均受促进,因此它们的幼苗获益程度最大,其次为C4植物,C3植物中豆科植物又次之,而非菌根侵染植物仅能从根系表面积的增加得益,处于劣势,这将导致植物群落组成的改变,甚至可能影响群落中物种的多样性 [24]。尽管单独因素的作用不太可能导致菌根共生分解 [25],需要更近一步研究关于多因素变化组合和其他人类群落相互作用对植物与AM真菌交互作用的影响,以预测菌根对于环境变化的适应性。

3. eCO2与AM真菌共同作用对土壤的影响

3.1. 对土壤养分的影响

Shi S等 [26] 研究显示eCO2显著增加了蚕豆土壤中的有机碳,降低了土壤中硝态氮( NO 3 -N)含量。而且无论是否有AM真菌定植,对土壤中有效氮(AN)、有效磷(PN)和有效钾(KN)均无影响。eCO2条件下的接种AM真菌的土壤中氨态氮( NH 4 + -N)含量比普通环境CO2条件下提高19.7%,而eCO2条件下不接种AM真菌的土壤中 NH 4 + -N含量则比普通环境CO2下高15.6%。由此可以见AM真菌在eCO2和普通环境CO2条件下均显著提高了土壤有机碳、AN、 NO 3 -N、PN和KN含量。此外,CO2 × AM真菌的显著相互作用仅表现在 NH 4 + -N中。事实上,考虑到相应的CO2随植物光合用的波动,夜间株高处的环境CO2浓度在通常高于白天 [27],其在另一项试验中表明 [28] AM真菌的定殖增加了土壤N、P和K的有效性,特别是在eCO2的白天,植物–土壤对eCO2的交互反馈可能决定了土壤N、P和K的增加或减少,以及微生物群落的组成和活动。

一般来说,C直接或间接地通过植物的根和/或菌根流入土壤。在eCO2的作用下,有更多的C可用于菌根的生长和发育,因此这些额外的C刺激了AM真菌的关联 [29]。反过来,AM真菌加速了eCO2作用下土壤有机质分解为N和P [30]。其中在500~610 ppm eCO2下易于转化酶和脲酶活性,表明有机C-N化合物的分解、N和其他营养物质的释放,导致微生物的普遍激活 [31]。土壤酶活性的相对增加也可能归因于在eCO2条件下产生的较高的生物量产量,因此对N、P、K的需求更大 [32]。事实上,本研究中,日间CO2下可用N、P、K的显著下降支持了这一观点。一项分析显示,eCO2诱导的营养限制可能会增加土壤酶活性 [33]。然而,在eCO2条件下,AM真菌小麦幼苗的土壤AN、AP和AK水平显著高于非AM真菌小麦幼苗,这表明AM真菌的存在可以在eCO2条件下提供更好的土壤肥力。

3.2. 对土壤中AM真菌群落的影响

随着ACO2浓度的增加,土壤中真菌群落的组成和功能可能会发生变化。真菌作为分解者和植物共生体,可以调节生态系统碳循环的速率。真菌群落组成对这一速率特别重要,因为复杂土壤碳的分解需要比任何单一真菌物种所能提供的更多的酶多样性 [34] [35]。

AM真菌的丰度可能会随着ACO2值的增加而增加。当植物固定并将更多的碳分配给根系时,它们可能需要更多的土壤氮和磷来支持不断增长的增长。因为菌根真菌对获取土壤氮和磷很重要,这两种营养物质经常限制陆地净初级生产力(NPP)——CO2时,植物可能更多倾向菌根组合。

在同一个属中不同种对ACO2浓度升高的响应也不同。Klironomos等 [36] 对A. tridentate接种根内球囊霉(Glomus intraradices)和幼套球囊霉(Glomus etunicatum) 16周时间后测定各种指标,试验结果表明,两种菌根真菌的侵染率、外生菌丝的长度以及土壤中孢子数在CO2浓度升高时都有所增加,但是各个指标的增加量根内球囊霉都比幼套球囊霉大。Wolf等 [37] 研究了560 μmol·mol−1和368 μmol·mol−1 CO2浓度下不同栽培环境中不同丛枝菌根真菌的响应,试验发现,在单一栽培条件下,用于试验的11种丛枝菌根真菌中只有明球囊霉(Glomus clarum)在高浓度CO2中显著增加,而在多种作物栽培条件下,影响不显著。而氮水平对丛枝菌根真菌的孢子和种类没有影响,CO2和N交互作用对丛枝菌根的区系也没有影响。

Andrew C. Procter [38] 研究了德克萨斯州草原上的真菌群落对工业前到未来(250~500 ppm) CO2梯度的响应,并研究了土壤特性如何影响真菌群落和对CO2的分解反应。对AM真菌数据集中的所有序列与NCBI数据库的Glomus属进行匹配。与真菌总OTUs (operational taxonomic units)丰富度相似,AM真菌OTUs丰富度不因土壤类型而不同。此外,AM真菌的OTUs丰富度不受CO2处理影响。

4. eCO2对AM真菌共生植物生长的影响

在eCO2 [39] [40] [41] 作用下,C3植物组织的营养浓度普遍降低。对7761个观察结果进行的meta分析显示,平均689 ppm eCO2使植株N、P、K浓度降低7%~15%,其中氮的下降幅度大于P和K [39] [42]。而在eCO2条件下,较低的植物N、P、K可以通过AM真菌共生而得到改善。例如,与无AM真菌定植植物减少50%相比,56日龄AM-刺槐(Robinia pseudoacacia L.) [43] 在710 ppm eCO2条件下的植株总磷仅降低了22%。在700 ppm eCO2下,AM真菌对莴苣(Lactuca sativa Linn.)的K浓度的正影响大于ACO2 [44] 下。Chen等 [45] 研究表明,在730 ppm eCO2下,接种AM真菌增强了长叶车前(Plantago lanceolata L.)对15N和总氮的吸收,而不是羊茅(Festuca arundinacea)的吸收,这表明在eCO2条件下,AM真菌对植物氮吸收的影响具有种特异性。蚕豆(Vacia faba L.)与固氮菌结合,通过共生的氮固定在一定程度上减轻了氮缺乏 [46]。在550~750 ppm下,莴苣(Lactuca sativa Linn.) [44]、水稻(Oryza sativa L.)、野稗(Echinochloa crusgalli) 57的P和K浓度升高,而黄花蒿(Artemisia annua Linn.) [47]、番茄 [48] 和硬质小麦 [49] 中P和K浓度降低,牛至 [50] 和绿豆 [51] 变化不显著。此外,在eCO2条件下,气孔导度的降低和蒸腾速率可能会限制土壤中养分的质量流动,从而降低植株对N、P、K、Ca、Mg和S [52] [53] [54] 的吸收。

总的来说,AM真菌与CO2协同植物生长有一定影响,进一步的eCO2研究应采用两种或两种以上的菌根真菌物种,无论是个体或多个物种,也与其他真菌或细菌物种结合,以测试它们的交互作用在其他全球环境变化情景下,如气候变暖或温度上升、干旱等,植物的生长和产量生产,以及田间土壤养分的有效性。

5. 展望

在ACO2上升的情况下,eCO2的研究应使用多种AM真菌物种以及其他有益的真菌或细菌物种,以测试它们在其他全球变化事件(包括变暖和干旱)下对田间植物性能和土壤养分可用性的交互影响。菌根研究人员面临着在小规模过程中设计实验的困境,这些小规模过程有助于解决大规模问题,如全球变暖问题。此外植物菌根的形成和菌根真菌群落物种组成的改变还可能影响土壤C存储从而影响陆地土壤–植被系统在全球CO2变化下的反馈效应。

AM真菌可能不是灵丹妙药,即农业强化的“可持续救世主” [55],但AM真菌确实有潜力协助植物的营养同化。因此,AM真菌可以在减少氮和磷基肥料的施用方面发挥重要作用,作为可持续土壤的更广泛战略的一部分。更好地了解环境–植物–微生物相互作用的机制对于未来的保护和维持农业集约化仍然很重要。

参考文献

[1] Bago, B. (2000) Putative Sites for Nutrient Uptake in Arbuscular Mycorrhizal Fungi. Plant and Soil, 226, 263-274.
https://doi.org/10.1023/A:1026456818903
[2] Abbott, L.K. and Robson, A.D. (1991) Factors Influencing the Occurrence of Vesicular-Arbuscular Mycorrhizas. Agriculture, Ecosystems & Environment, 35, 121-150.
https://doi.org/10.1016/0167-8809(91)90048-3
[3] Allen, M.F. (1996) Te Ecology of Arbuscular Mycorrhizas: A Lookback into the 20th Century and a Peek into the 21st. Mycological Research, 100, 769-782.
https://doi.org/10.1016/S0953-7562(96)80021-9
[4] Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. The Quarterly Review of Biology, 3, 273-281.
[5] Bolan, N.S. (1991) A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant and Soil, 134, 189-207.
https://doi.org/10.1007/BF00012037
[6] Jackobsen, G. (1993) External Hyphae of Vesicular-Arbuscular Mycorrhizal Fungi Associated with Trifolium subterraneum L. 1. Spread of Hyphae and Phosphorus Inflow into Roots. The New Phytologist, 120, 371-380.
https://doi.org/10.1111/j.1469-8137.1992.tb01077.x
[7] Ainsworth, E.A. and Long, S.P. (2021) 30 Years of Free-Air Carbon Dioxide Enrichment (FACE): What Have We Learned about Future Crop Productivity and Its Potential for Adaptation? Global Change Biology, 27, 27-49.
https://doi.org/10.1111/gcb.15375
[8] Casper, J., et al. (2016) Growth and Yield Stimulation under Elevated CO2 and Drought: A Meta-Analysis on Crops. Environmental and Experimental Botany, 122, 150-157.
https://doi.org/10.1016/j.envexpbot.2015.10.004
[9] Habeeb, T.H., Abdel-Mawgoud, M., Yehia, R.S., Khalil, A.M.A., Saleh, A.M. and AbdElgawad, H. (2020) Interactive Impact of Arbuscular Mycorrhizal Fungi and Elevated CO2 on Growth and Functional Food Value of Thymus vulgare. Journal of Fungi, 6, 168.
https://doi.org/10.3390/jof6030168
[10] Becklin, K.M., Mullinix, G.W.R. and Ward, J.K. (2016) Host Plant Physiology and Mycorrhizal Functioning Shift across a Glacial Through Future CO2 Gradient. Plant Physiology, 172, 789-801.
https://doi.org/10.1104/pp.16.00837
[11] Baslam, M., Erice, G. and Goicoechea, N. (2012) Impact of Arbuscular Mycorrhizal Fungi (AMF) and Atmospheric CO2 Concentration on the Biomass Production and Partitioning in the Forage Legume Alfalfa. Symbiosis, 58, 171-181.
https://doi.org/10.1007/s13199-012-0199-6
[12] Saleh, A.M., Abdel-Mawgoud, M., Hassan, A.R., Habeeb, T.H., Yehia, R.S. and AbdElgawad, H. (2020) Global Metabolic Changes Induced by Arbuscular Mycorrhizal Fungi in Oregano Plants Grown under Ambient and Elevated Levels of Atmospheric CO2. Plant Physiology and Biochemistry, 151, 255-263.
https://doi.org/10.1016/j.plaphy.2020.03.026
[13] Goicoechea, N., Baslam, M., Erice, G. and Irigoyen, J.J. (2014) Increased Photosynthetic Acclimation in Alfalfa Associated with Arbuscular Mycorrhizal Fungi (AMF) and Cultivated in Greenhouse under Elevated CO2. Journal of Plant Physiology, 171, 1774-1781.
https://doi.org/10.1016/j.jplph.2014.07.027
[14] Zhu, X.C., Song, F.B., Liu, S.Q. and Liu, F.L. (2016) Arbuscular Mycorrhiza Improve Growth, Nitrogen Uptake, and Nitrogen Use Efficiency in Wheat Grown under Elevated CO2. Mycorrhiza, 26, 133-140.
https://doi.org/10.1007/s00572-015-0654-3
[15] Shi, S., Luo, X., Wen, M., Dong, X., Sharifi, S., Xie, D. and He, X. (2021) Funneliformis Mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi (Basel), 7, 458.
https://doi.org/10.3390/jof7060458
[16] 苑学霞, 林先贵, 张华勇, 等. 大气CO2浓度升高对稻麦轮作下土壤中AM真菌多样性的影响[J]. 土壤, 2005, 37(6): 659-662.
https://doi.org/10.3321/j.issn:0253-9829.2005.06.016
[17] 苑学霞, 林先贵, 褚海燕, 等. CO2浓度倍增对AM真菌及其对绿豆接种效应的影响[J]. 农业环境科学学报, 2007, 26(1): 211-215.
https://doi.org/10.3321/j.issn:1672-2043.2007.01.042
[18] Neill, E.G., O’Neill, R.V. and Norby, R.J. (1991) Hierarchy Theory as a Guide to Mycorrhizal Research on Large- Scale Problems. Environmental Pollution, 73, 271-284.
https://doi.org/10.1016/0269-7491(91)90054-Z
[19] 姚凯骞. 独脚金内酯在CO2加富及菌根真菌促进磷吸收中的作用研究[D]: [硕士学位论文]. 杭州: 浙江大学, 2016.
[20] Roughier, H. and Read, D.J. (1998) The Role of Mycorrhiza in Determining the Response of Plantago lanceolata to CO2 Enrichment. New Phytologist, 139, 367.
https://doi.org/10.1046/j.1469-8137.1998.00200.x
[21] Wang, X.-F., Li, S.-Y., Bai, K.-Z., et al. (1998) Effects of Atmospheric CO2 Enrichment on the Root Surface Area of Plant and Colonization and Its Intensity of AMF in Plant. Chinese Science Bulletin, 43, 2083-2084. (In Chinese)
[22] Staddon, P.L., Fitter, A.H. and Graves, D. (1999) Effect of Elevated Atmospheric CO2 on Mycorrhizal Colonization‚ External Mycorrhizal Hyphal Production and Phosphorus Inflow in Plantago lanceolata and Trifolium repens in Association with the Arbuscular Mycorrhizal Fungus Glomus mosseae. Global Change Biology‚ 5, 347-358.
https://doi.org/10.1046/j.1365-2486.1999.00230.x
[23] Duarte, A.G. and Maherali, H. (2022) A Meta-Analysis of the Effects of Climate Change on the Mutualism between Plants and Arbuscular Mycorrhizal Fungi. Ecology and Evolution, 12, e8518.
https://doi.org/10.1002/ece3.8518
[24] 汪杏芬, 李世仪, 白克智, 等. 大气CO2浓度倍增对植物根系表面积和泡囊–丛枝菌根侵染活力和强度的影响[J]. 科学通报, 1998, 43(19): 2083-2084.
[25] Frederickson, M.E. (2017) Mutualisms Are Not on the Verge of Breakdown. Trends in Ecology and Evolution, 32, 727-734.
https://doi.org/10.1016/j.tree.2017.07.001
[26] Shi, S., Luo, X., Dong, X., Qiu, Y., Xu, C. and He, X. (2021) Arbuscular Mycorrhization Enhances Nitrogen, Phosphorus and Potassium Accumulation in Vicia faba by Modulating Soil Nutrient Balance under Elevated CO2. Journal of Fungi (Basel), 7, 361.
https://doi.org/10.3390/jof7050361
[27] Ziska, L.H., Ghannoum, O., Baker, J., Conroy, J., Bunce, J.A., Kobayashi, K. and Okada, M. (2001) A Global Perspective of Ground Level, “Ambient” Carbon Dioxide for Assessing the Response of Plants to Atmospheric CO2. Global Change Biology, 7, 789-796.
https://doi.org/10.1046/j.1365-2486.2001.00436.x
[28] Shi, S., Luo, X., Wen, M., Dong, X., Sharifi, S., Xie, D. and He, X. (2021) Funneliformis Mosseae Improves Growth and Nutrient Accumulation in Wheat by Facilitating Soil Nutrient Uptake under Elevated CO2 at Daytime, Not Nighttime. Journal of Fungi (Basel), 7, 458.
https://doi.org/10.3390/jof7060458
[29] Alberton, O., Kuyper, T.W. and Gorissen, A. (2005) Taking Mycocentrism Seriously: Mycorrhizal Fungal and Plant Responses to Elevated CO2. New Phytologist, 167, 859-868.
https://doi.org/10.1111/j.1469-8137.2005.01458.x
[30] Cheng, L., Booker, F.L., Tu, C., Burkey, K.O., Zhou, L., Shew, H.D., Rufty, T.W. and Hu, S. (2012) Arbuscular Mycorrhizal Fungi Increase Organic Carbon Decomposition under Elevated CO2. Science, 337, 1084-1087.
https://doi.org/10.1126/science.1224304
[31] Das, S., Bhattacharyya, P. and Adhya, T. (2011) Interaction Effects of Elevated CO2 and Temperature on Microbial Biomass and Enzyme Activities in Tropical Rice Soils. Environmental Monitoring and Assessment, 182, 555-569.
https://doi.org/10.1007/s10661-011-1897-x
[32] Singh, A.K., Rai, A., Kushwaha, M., Chauhan, P.S., Pandey, V. and Singh, N. (2019) Tree Growth Rate Regulate the Influence of Elevated CO2 on Soil Biochemical Responses under Tropical Condition. Journal of Environmental Management, 231, 1211-1221.
https://doi.org/10.1016/j.jenvman.2018.11.025
[33] Kelley, A.M., Fay, P.A., Polley, H.W., Gill, R.A. and Jackson, R.B. (2011) Atmospheric CO2 and Soil Extracellular Enzyme Activity: A Meta-Analysis and CO2 Gradient Experiment. Ecosphere, 2, art96.
https://doi.org/10.1890/ES11-00117.1
[34] Sinsabaugh, R. (2005) Fungal Enzymes at the Community Scale. In: Dighton, J., White, J.F. and Oudemans, P., Eds., The Fungal Community: Its Organization and Role in the Ecosystem, Taylor and Francis, Boca Raton, 349-360.
https://doi.org/10.1201/9781420027891.ch17
[35] Allison, S., Hanson, C. and Treseder, K. (2007) Nitrogen Fertilization Reduces Diversity and Alters Community Structure of Active Fungi in Boreal Ecosystems. Soil Biology and Biochemistry, 39, 1878-1887.
https://doi.org/10.1016/j.soilbio.2007.02.001
[36] Klironomos, J.N., Ursic, M. and Rillig, M. (1998) Interspecific Differences in the Response of Arbuscular Mycorrhizal Fungi to Artemisia tridentata Grown under Elevated Atmospheric CO2. New Phytologist, 138, 599-605.
https://doi.org/10.1046/j.1469-8137.1998.00141.x
[37] Hodge, A., Campbell, C.D. and Fitter, A.H. (2001) An Arbuscular Mycorrhizal Fungus Accelerates Decomposition and Acquires Nitrogen Directly from Organic Material. Nature, 413, 297-299.
https://doi.org/10.1038/35095041
[38] Procter, A.C., Ellis, J.C., Fay, P.A., Polley, H.W. and Jackson, R.B. (2014) Fungal Community Responses to Past and Future Atmospheric CO2 Differ by Soil Type. Applied and Environmental Microbiology, 80, 7364-7377.
https://doi.org/10.1128/AEM.02083-14
[39] Du, C., Wang, X., Zhang, M., Jing, J. and Gao, Y. (2019) Effects of Elevated CO2 on Plant C-N-P Stoichiometry in Terrestrial Ecosystems: A Meta-Analysis. Science of the Total Environment, 650, 697-708.
https://doi.org/10.1016/j.scitotenv.2018.09.051
[40] Treseder, K.K. (2004) A Meta-Analysis of Mycorrhizal Responses to Nitrogen, Phosphorus, and Atmospheric CO2 in field Studies. New Phytologist, 164, 347-355.
https://doi.org/10.1111/j.1469-8137.2004.01159.x
[41] Butterly, C.R., Armstrong, R., Chen, D. and Tang, C. (2015) Carbon and Nitrogen Partitioning of Wheat and Field Pea Grown with Two Nitrogen Levels under Elevated CO2. Plant Soil, 391, 367-382.
https://doi.org/10.1007/s11104-015-2441-5
[42] Loladze, I. (2014) Hidden Shift of the Ionome of Plants Exposed to Elevated CO2 Depletes Minerals at the Base of Human Nutrition. eLife, 3, e02245.
https://doi.org/10.7554/eLife.02245.017
[43] Olesniewicz, K.S. and Thomas, R.B. (1999) Effects of Mycorrhizal Colonization on Biomass Production and Nitrogen fixation of Black Locust (Robinia pseudoacacia) Seedlings Grown under Elevated Atmospheric Carbon Dioxide. New Phytologist, 142, 133-140.
https://doi.org/10.1046/j.1469-8137.1999.00372.x
[44] Baslam, M., Garmendia, I. and Goicoechea, N. (2012) Elevated CO2 May Impair the Beneficial Effect of Arbuscular Mycorrhizal Fungi on the Mineral and Phytochemical Quality of Lettuce. Annals of Applied Biology, 161, 180-191.
https://doi.org/10.1111/j.1744-7348.2012.00563.x
[45] Chen, X., Tu, C., Burton, M.G., Watson, D.M., Burkey, K.O. and Hu, S. (2007) Plant Nitrogen Acquisition and Interactions under Elevated Carbon Dioxide: Impact of Endophytes and Mycorrhizae. Global Change Biology, 13, 1238-1249.
https://doi.org/10.1111/j.1365-2486.2007.01347.x
[46] Parvin, S., Uddin, S., Tausz-Posch, S., Armstrong, R. and Tausz, M. (2020) Carbon Sink Strength of Nodules But Not Other Organs Mod-Ulates Photosynthesis of Faba Bean (Vicia faba) Grown under Elevated [CO2] and Different Water Supply. New Phytologist, 227, 132-145.
https://doi.org/10.1111/nph.16520
[47] Zhu, C., Zeng, Q., Yu, H., Liu, S., Dong, G. and Zhu, J. (2016) Effect of Elevated CO2 on the Growth and Macronutrient (N, P and K) Uptake of Annual Wormwood (Artemisia annua L.). Pedosphere, 26, 235-242.
https://doi.org/10.1016/S1002-0160(15)60038-8
[48] Halpern, M., Bar-Tal, A., Lugassi, N., Egbaria, A., Granot, D. and Yermiyahu, U. (2018) The Role of Nitrogen in Photosynthetic Acclimation to Elevated [CO2] in Tomatoes. Plant Soil, 434, 397-411.
https://doi.org/10.1007/s11104-018-3857-5
[49] Goicoechea, N., Bettoni, M.M., Fuertes-Mendizábal, T., Gonzalez-Murua, C. and Aranjuelo, I. (2016) Durum Wheat Quality Traits Affected by Mycorrhizal Inoculation, Water Availability and Atmospheric CO2 Concentration. Crop and Pasture Science, 67, 147.
https://doi.org/10.1071/CP15212
[50] Saleh, A.M., Abdel-Mawgoud, M., Hassan, A.R., Habeeb, T.H., Yehia, R.S. and AbdElgawad, H. (2020) Global Metabolic Changes Induced by Arbuscular Mycorrhizal Fungi in Oregano Plants Grown under Ambient and Elevated Levels of Atmospheric CO2. Plant Physiology and Biochemistry, 151, 255-263.
https://doi.org/10.1016/j.plaphy.2020.03.026
[51] Li, P., Han, X., Zong, Y., Li, H., Lin, E., Han, Y. and Hao, X. (2015) Effects of Free-Air CO2 Enrichment (FACE) on the Uptake and Utilization of N, P and K in Vigna radiata. Agriculture, Ecosystems & Environment, 202, 120-125.
https://doi.org/10.1016/j.agee.2015.01.004
[52] Ericsson, T. (1995) Growth and Shoot: Root Ratio of Seedlings in Relation to Nutrient Availability. Plant Soil, 168, 205-214.
https://doi.org/10.1007/BF00029330
[53] Habermann, E., De Oliveira, E.A.D., Contin, D.R., Martin, J.A.B.S., Curtarelli, L., Gonzalez-Meler, M.A. and Martinez, C.A. (2019) Stomatal Development and Conductance of a Tropical Forage Legume Are Regulated by Elevated [CO2 ] under Moderate Warming. Frontiers in Plant Science, 10, Article No. 609.
https://doi.org/10.3389/fpls.2019.00609
[54] McGrath, J.M. and Lobell, D.B. (2012) Reduction of Transpiration and Altered Nutrient Allocation Contribute to Nutrient Decline of Crops Grown in Elevated CO2 Concentrations. Plant, Cell & Environment, 36, 697-705.
https://doi.org/10.1111/pce.12007
[55] Thirkell, T.J., Charters, M.D., Elliott, A.J., Sait, S.M. and Field, K.J. (2017) Are Mycorrhizal Fungi Our Sustainable Saviours? Considerations for Achieving Food Security. Journal of Ecology, 105, 921-929.
https://doi.org/10.1111/1365-2745.12788