ET-1拮抗药物治疗肺动脉高压的研究进展
Research Advances in ET-1 Antagonistic Drugs in the Treatment of Pulmonary Hy-pertension
DOI: 10.12677/ACM.2022.125682, PDF, HTML, XML, 下载: 275  浏览: 457 
作者: 鲁梦雪:青海大学,青海 西宁;白振忠:青海大学医学院高原医学研究中心,青海 西宁
关键词: 肺动脉高压内皮素-1PAHET-1治疗Pulmonary Hypertension Endothelin-1 PAH ET-1 Treat
摘要: 肺动脉高压(PAH)是一种进行性致死性疾病,其特征是肺血流动力学和血管生长调节受损。这些变化会增加肺血管阻力进而引起肺动脉压,导致右心室衰竭,最终结局是死亡。研究证实内皮素-1升高与PAH的发生发展密切相关,针对内皮素通路的靶向药物不仅能改善PAH患者的症状,而且可以延缓甚至逆转疾病进展,改善患者远期预后。本文回顾该领域的相关文献对内皮素拮抗剂PAH中的作用机制、临床应用及未来前景进行综述。
Abstract: Pulmonary hypertension (PAH) is a progressive, lethal disease characterized by impaired pulmo-nary hemodynamics and vascular growth regulation. These changes increase pulmonary vascular resistance, which in turn causes pulmonary artery pressure, leading to right ventricular failure, with the end resulting in death. Studies have confirmed that elevated endothelin-1 is closely related to the development of PAH, and targeted drugs targeting the endothelin pathway can not only im-prove symptoms in patients with PAH, but also delay or even reverse disease progression and im-prove long-term prognosis for patients. This paper reviews the literature in this field to review the mechanism of action, clinical application and future prospects of the endothelin antagonist PAH.
文章引用:鲁梦雪, 白振忠. ET-1拮抗药物治疗肺动脉高压的研究进展[J]. 临床医学进展, 2022, 12(5): 4711-4715. https://doi.org/10.12677/ACM.2022.125682

1. 引言

肺动脉高压是由多种已知或未知原因引起的肺动脉异常升高的一种病理生理状态,包括肺小动脉收缩力增强、内皮功能障碍、内皮细胞和平滑肌细胞的重塑和增殖以及原位血栓 [1],肺动脉高压常见的临床症状主要包括胸闷、呼吸短促和进行性活动耐受性降低。随着疾病的进展,右心室肥厚和右心室纤维化发展,伴有舒张功能受损和体循环充血。呼吸困难、水肿和晕厥并发症会影响右心功能的进行性下降,导致右心衰竭(RHF)。世界肺动脉高压研讨会(WSPH)将肺动脉高(PH)分为五类,本综述主要致力于研究第一类即动脉性肺动脉高压(PAH)。其血流动力学诊断标准为:在海平面、静息状态下,通过右心导管测量平均肺动脉压(mean pulmonary artery pressure, mPAP) ≥ 25 mmHg,肺动脉楔形压(PAWP) ≤ 15 mmHg和肺血管阻力(PVR) > 3个Wood单位 [2]。早期症状可能并不典型,患者经常忽视而不及时就诊,直到右心室失代偿至死亡。流行病学研究显示 [3],PAH患者的5年总生存率仅为59%。因此寻找有效的治疗方法十分有必要,现有的治疗方法分为常规治疗和靶向治疗,其中常规治疗是指使用抗凝药物、利尿药、地高辛和其他心血管药物以及吸氧等,但常规治疗往往仅能改善症状,不能有效阻止病程的进展甚至逆转病理改变,临床上还使用针对相关受体的靶向治疗,已知进行性血管缺陷的基础是三个关键信号通路:一氧化氮(NO)、内皮素-1 (ET-1)及前列环素(PGI2) [4]。目前PAH的靶向药物针对这三个通路主要通过改善肺动脉的异常收缩、抑制肺动脉平滑肌细胞(pulmonary artery smooth muscle cells, PASMCs)增殖等达到治疗作用。合理使用靶向药物能够明显改善PAH患者的症状,提高生存率,逆转病情的进展,把PAP控制在正常范围内,相关证据表明内皮素拮抗药物在这方面表现出独特的优势。目前在临床上用于肺动脉高压患者的治疗,并被认为具有进一步的靶向疾病的潜能,如心力衰竭、心肌肥厚等心血管疾病,具有相当积极的应用前景。

2. 内皮素-1在PAH中的作用机制

2.1. 内皮素的生成、分布和作用

内皮素-1 (ET-1)是目前已知的最有效的血管收缩剂。它对血管张力有显著的持久作用 [5] [6]。它由21个氨基酸链组成,主要从内皮细胞释放。且内皮素合成在物理和化学刺激下被激活,刺激因素包括剪切应力、缺氧、凝血酶和血管活性因子,如血管紧张素II [7]。ET-1由内皮细胞持续合成和释放,已在所有类型的血管以及许多其他细胞中检测到,如上皮细胞、巨噬细胞、成纤维细胞、心肌细胞等 [8]。ET-1另有两个同分异构体家族即ET-2、ET-3,其差别在于个别氨基酸的残基,对于心血管起主要作用的是ET-1。内皮素通过两种已知的G蛋白偶联受体介导其作用,即内皮素A (ET-A)和内皮素B (ET-B),这两种受体广泛分布,尤其是在血管中。在人类血管中,ET-A主要在血管平滑肌细胞上检测到,并调节血管收缩性,而ET-B受体存在于血管平滑肌(它介导血管收缩)和血管内皮上,在血管内皮被激活时,诱导释放内皮衍生的舒张因子,如介导血管舒张的一氧化氮(NO) [9]。大多数血管内皮素-1降解发生在内皮素-1/内皮素-B受体复合物内化后的细胞内 [10],因此拮抗相应受体会对血流动力学产生影响。结合以上生理基础,已有相关研究证实,内皮素-1会发挥收缩血管等作用导致肺动脉高压持续升高,针对此效应,ET-1抗体或ET-1阻断剂则可防治肺动脉高压。

2.2. 内皮素拮抗药物逆转肺血管重构

内皮由扁平、长的内皮细胞组成,覆盖于血管内壁。内皮最初被简单地视为血管系统内的单层细胞,作为血液和血管壁之间的屏障,除了维持血液凝固和作为血管生成的起点的功能外,内皮还提供了半通透性屏障,以调节血管内和血管外间隙之间电解质,大分子和液体的转移。然而,它现在更多地被认为是一个调节血管稳态的器官。内皮细胞合成重要的血管活性物质,包括前列环素、NO和血管收缩内皮素-1 (ET-1)。因此,内皮细胞是血压和血管张力的关键调节因子 [11]。在生理条件下,内皮NO合酶(eNOS)是血管NO的主要生产者。它具有抗血栓、抗高血压和抗动脉粥样硬化作用。内皮NO通过扩散到达平滑肌细胞(SMC)并引起血管舒张 [12]。ET-1的过量产生与血管疾病如PAH的发病机制有关 [13],在PAH肺中可见的丛状病变由增殖性内皮细胞组成,仅出现在肌肉动脉或直径约200 um的肌肉动脉中。抑制ET-1是治疗该疾病的药理学靶点,正常分化的血管平滑肌细胞(VSMC)表达一组特定的收缩蛋白,合成活性低,增殖缓慢 [14]。在生长因子刺激或对血管损伤作出反应时,VSMC可以通过去分化、增殖和迁移到损伤部位来改变其表型发生重构。VSMC的过度增殖会促进动脉硬化、再狭窄进而导致肺动脉高压的发展 [14] [15]。但是,在受到诸如低氧等刺激时,血管内皮受损,会产生较多的活性氧诱发炎症反应刺激血管收缩,另具有舒张作用的NO也会产生变少,导致血管的收缩/舒张机制失衡。而内皮素拮抗药物可通过抑制ET-1来逆转血管重构等过程而达到治疗肺动脉高压的目的。ETAR在VSMC中高度表达,并促进其收缩和增殖 [16] [17]。反之亦然,ET-1与ETBR的结合激活血管扩张剂的产生(如NO),并促进ET-1从循环中清除 [18] [19]。ET-1最初被称为纯血管收缩剂 [20],此外,ET-1在肺动脉高压中起主要作用:ET-1水平与疾病严重程度之间有明显相关性 [21] [22],因此,ETAR拮抗剂是肺动脉高压治疗领域的一线药物。

3. 临床常用的内皮素拮抗药物

ET-1受体阻滞剂,特别是内皮素受体拮抗剂的临床使用已被证明可有效管理慢性肾脏病、糖尿病和肺动脉高压患者的高血压 [23]。内皮素通过内皮素A和内皮素B受体起作用。在人PAH和PAH实验动物模型中,ET-1的肺和血浆水平升高。ET-1是一种有效的肺血管收缩剂,可刺激动脉平滑肌细胞的有丝分裂,从而有助于肺血管重塑。临床应用时,内皮受体拮抗剂(ERAs)波生坦、安贝生坦、安力生坦和马西替坦对PAH有一定益处,它们能通过对抗缩血管作用和血管重构而舒张肺小动脉达到降压目的。但是,以上药物会带来不同程度的副作用,在一项meta分析中,非选择性ERA波生坦大约在11%~12%的患者中观察到转氨酶升高显示出肝脏毒性,波生坦和马西替坦会显示出贫血,波生坦和安贝生坦多见于伴外周水 [24]。所以要求服用波生坦的患者需要定期检查肝功能。如果患者出现肝功能衰竭体征,则应停用ERAs。另外,波生坦具有几种相关的药物相互作用,特别是血清西地那非浓度的降低,这可能会损害联合使用这些药物的临床益处而无法使之充分发挥药物效能 [25] [26]。

4. 未来内皮素拮抗药物的治疗前景及展望

内皮素受体拮抗剂能增加内皮NO产生,减少ET-1合成,减少血管氧化应激,并防止平滑肌增殖、血管重塑和动脉僵硬。目前内皮素受体拮抗药物疗效不显著及价格高昂限制了其广泛应用于临床,因此需要副作用更少、疗效更显著及价格更低廉的内皮素受体拮抗药物。或者采用多药联合治疗PAH,如波生坦和西地那非联合治疗肺动脉高压的比较西地那非单药治疗能够显示治疗16周后6分钟步行试验有所改善,虽然未能延迟首次发病/死亡事件的时间,然而,对涉及联合治疗的研究数据的荟萃分析确实表明,这种方法在治疗PAH方面是有效的。笔者相信随着对肺动脉高压的不断认识及众多研究者的不断探索,未来我们能攻克肺动脉高压,使肺动脉高压患者免受疾病的困扰。

参考文献

[1] Tuder, R.M., Archer, S.L., Dorfmüller, P., Erzurum, S.C., Guignabert, C., Michelakis, E., Rabinovitch, M., Schermuly, R., Stenmark, K.R. and Morrell, N.W. (2013) Relevant Issues in the Pathology and Pathobiology of Pulmonary Hyper-tension. Journal of the American College of Cardiology, 62, D4-D12.
https://doi.org/10.1016/j.jacc.2013.10.025
[2] Hoeper, M.M., Bogaard, H.J., Condliffe, R., Frantz, R., Khanna, D., Kurzyna, M., Langleben, D., Manes, A., Satoh, T. and Torres, F. (2013) Definitions and Diagnosis of Pulmonary Hypertension. Journal of the American College of Cardiology, 62, D42-D50.
https://doi.org/10.1016/j.jacc.2013.10.032
[3] Galie, N., Humbert, M., Vachiery, J.L., Gibbs, S., Lang, I., Tor-bicki, A., et al. (2015) 2015 ESC/ERS Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). European Respiratory Journal, 46, 903-975.
https://doi.org/10.1183/13993003.01032-2015
[4] Budhiraja, R., Tuder, R.M. and Hassoun, P.M. (2004) Endo-thelial Dysfunction in Pulmonary Hypertension. Circulation, 109, 159-165.
https://doi.org/10.1161/01.CIR.0000102381.57477.50
[5] Li, H. and Forstermann, U. (2000) Nitric Oxide in the Pathogenesis of Vascular Disease. The Journal of Pathology, 190, 244-254.
https://doi.org/10.1002/(SICI)1096-9896(200002)190:3<244::AID-PATH575>3.0.CO;2-8
[6] Li, H., Wallerath, T. and Forstermann, U. (2002) Physiological Mechanisms Regulating the Expression of Endothelial-Type NO Synthase. Nitric Oxide, 7, 132-147.
https://doi.org/10.1016/S1089-8603(02)00127-1
[7] Davenport, A.P., Hyndman, K.A., Dhaun, N., Southan, C., Kohan, D.E. and Pollock, J.S. (2016) Endothelin. Pharmacological Reviews, 68, 357-418.
https://doi.org/10.1124/pr.115.011833
[8] Simmet, T., Pritze, S., Thelen, K.I. and Peskar, B.A. (1992) Release of Endothelin in the Oleic Acid-Induced Respiratory Distress Syndrome in Rats. European Journal of Pharmacology, 211, 319-322.
https://doi.org/10.1016/0014-2999(92)90387-J
[9] D’Orléans-Juste, P., Davenport, A.P., Godfraind, T., Maguire, J.J., Ohlstein, E.H. and Ruffolo, R.R. (2019) Endothelin Receptors (Version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide to Pharmacology CITE, 1-8.
https://doi.org/10.2218/gtopdb/F21/2019.4
[10] Enevoldsen, F.C., Sahana, J., Wehland, M., Grimm, D., Infanger, M. and Krüger, M. (2020) Endothelin Receptor Antagonists: Status Quo and Future Perspectives for Targeted Therapy. Journal of Clinical Medicine, 9, 824.
https://doi.org/10.3390/jcm9030824
[11] Nicholson, S.K., Tucker, G.A. and Brameld, J.M. (2008) Effects of Die-tary Polyphenols on Gene Expression in Human Vascular Endothelial Cells. Proceedings of the Nutrition Society, 67, 42-47.
https://doi.org/10.1017/S0029665108006009
[12] Zhao, Y., Vanhoutte, P.M. and Leung, S.W. (2015) Vascular Nitric Oxide: Beyond eNOS. Journal of Pharmacological Sciences, 129, 83-94.
https://doi.org/10.1016/j.jphs.2015.09.002
[13] Corder, R., Douthwaite, J.A., Lees, D.M., Khan, N.Q., Viseu Dos Santos, A.C., Wood, E.G. and Carrier, M.J. (2001) Endothelin-1 Synthesis Reduced by Red Wine. Nature, 414, 863-864.
https://doi.org/10.1038/414863a
[14] Thompson, A.M., Martin, K.A. and Rzucidlo, E.M. (2014) Resveratrol Induces Vascular Smooth Muscle Cell Differentiation through Stimulation of SirT1 and AMPK. PLoS ONE, 9, e85495.
https://doi.org/10.1371/journal.pone.0085495
[15] Wang, D., Uhrin, P., Mocan, A., Waltenberger, B., Breuss, J.M., Tewari, D., Mihaly-Bison, J., Huminiecki, L., Starzynski, R.R., Tzvetkov, N.T., et al. (2018) Vascular Smooth Muscle Cell Proliferation as a Therapeutic Target. Part 1: Molecular Targets and Pathways. Biotechnology Advances, 36, 1586-1607.
https://doi.org/10.1016/j.biotechadv.2018.04.006
[16] Rubin, L.J. (2012) Endothelin Receptor Antagonists for the Treatment of Pulmonary Artery Hypertension. Life Sciences, 91, 517-521.
https://doi.org/10.1016/j.lfs.2012.07.033
[17] Frumkin, L.R. (2012) The Pharmacological Treatment of Pulmonary Arterial Hypertension. Pharmacological Reviews, 64, 583-620.
https://doi.org/10.1124/pr.111.005587
[18] Dupuis, J., Goresky, C.A. and Fournier, A. (1996) Pulmonary Clearance of Circulating Endothelin-1 in Dogs in Vivo: Exclusive Role of ETB Receptors. Journal of Applied Physiology, 81, 1510-1515.
https://doi.org/10.1152/jappl.1996.81.4.1510
[19] Warner, T.D., Mitchell, J.A., de Nucci, G. and Vane, J.R. (1989) Endothelin-1 and Rndothelin-3 Release EDRF from Isolated Perfused Arterial Vessels of the Rat and Rabbit. Journal of Cardiovascular Pharmacology, 13, S85-S88.
https://doi.org/10.1097/00005344-198900135-00021
[20] Yanagisawa, M., Kurihara, H., Kimura, S., Tomobe, Y., Kobayashi, M., Mitsui, Y., Yazaki, Y., Goto, K. and Masaki, T. (1988) A Novel Potent Vasoconstrictor Peptide Pro-duced by Vascular Endothelial Cells. Nature, 332, 411-415.
https://doi.org/10.1038/332411a0
[21] Stewart, D.J., Levy, R.D., Cernacek, P. and Langleben, D. (1991) Increased Plasma Endothelin-1 in Pulmonary Hypertension: Marker or Mediator of Disease? Annals of Internal Medicine, 114, 464-469.
https://doi.org/10.7326/0003-4819-114-6-464
[22] Cody, R.J., Haas, G.J., Binkley, P.F., Capers, Q. and Kelley, R. (1992) Plasma Endothelin Correlates with the Extent of Pulmonary Hypertension in Patients with Chronic Congestive Heart Failure. Circulation, 85, 504-509.
https://doi.org/10.1161/01.CIR.85.2.504
[23] Boesen, E.I. (2015) Endothelin Receptors, Renal Effects and Blood Pressure. Current Opinion in Pharmacology, 21, 25-34.
https://doi.org/10.1016/j.coph.2014.12.007
[24] Wei, A., Gu, Z., Li, J., et al. (2016) Clinical Adverse Effects of Endothelin Receptor Antagonists: Insights from the Meta-Analysis of 4894 Patients from 24 Randomized Double-Blind Placebo-Controlled Clinical Trials. Journal of the American Heart Association, 5, e003896.
https://doi.org/10.1161/JAHA.116.003896
[25] Paul, G.A., Gibbs, J.S., Boobis, A.R., Abbas, A. and Wilkins, M.R. (2005) Bosentan Decreases the Plasma Concentration of Sildenafil When Coprescribed in Pulmonary Hypertension. British Journal of Clinical Pharmacology, 60, 107- 112.
https://doi.org/10.1111/j.1365-2125.2005.02383.x
[26] McLaughlin, V., Channick, R.N., Ghofrani, H.A., et al. (2015) Bosentan Added to Sildenafil Therapy in Patients with Pulmonary Arterial Hypertension. European Respiratory Journal, 46, 405-413.
https://doi.org/10.1183/13993003.02044-2014