SARS-CoV-2 Omicron变异株的研究进展
Research Progress of SARS-CoV-2 Omicron Variant
摘要: 拥有较强变异能力的严重急性呼吸综合征冠状病毒2 (Severe Acute Respiratory Syndrome Coronavirus 2, SARS-CoV-2)在新型冠状病毒肺炎疫情长期流行的过程中不断发生变异进化。2021年11月,一种刺突蛋白携带大量突变的SARS-CoV-2变异株在南非博茨瓦纳出现并被命名为“Omicron”,随后该毒株迅速取代Delta变异株成为现阶段全球流行毒株。与此前流行毒株相比,Omicron变异株具有更高的传染性和较强的免疫逃逸能力,其蔓延是当下全球2019冠状病毒病(Corona Virus Disease 2019, COVID-19)日新增确诊病例居高不下的关键因素。本文就Omicron变异株的起源、免疫逃逸机制及毒株致病性等方面进行综述。在总结Omicron变异株特点的同时分析该变异毒株对疫苗接种策略的潜在影响,以期为该变异毒株及将来可能出现的新发毒株的防控提供参考。
Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with strong mutation ability has continuously mutated and evolved during the long-term epidemic of novel coronavirus pneumonia. In November 2021, a novel variant with a large number of mutations in spike protein appeared in Botswana of South Africa and was named “Omicron”, and then this lineage quickly replaced the Delta variants and became the current global epidemic lineage. Compared with previous epidemic variants, Omicron variant with higher infectivity and stronger immune evasion ability, the spread of this variant led to the current high number of daily confirmed cases of Corona Virus Disease 2019 (COVID-19) around the world. In this paper, the origin of Omicron variants, the immune escape mechanism and pathogenicity of this variant were reviewed. While summarizing the features of Omicron, the potential impact of Omicron variant on vaccination strategy is analyzed, so as to provide reference for the prevention of Omicron and possible emergence of new variants in the future.
文章引用:王康泓. SARS-CoV-2 Omicron变异株的研究进展[J]. 微生物前沿, 2022, 11(2): 49-60. https://doi.org/10.12677/AMB.2022.112006

1. 引言

严重急性呼吸综合征冠状病毒2 (severe acute respiratory syndrome coronavirus 2, SARS-CoV-2)感染引起的2019冠状病毒病(corona virus disease 2019, COVID-19)已在全球流行两年有余 [1]。新变异毒株产生及其对已有防控体系和治疗方案的冲击是抗击新型冠状病毒肺炎疫情道路上不可回避的问题。早在2020年1月,一种刺突蛋白(spike protein, S)携带D614G突变的SARS-CoV-2毒株因其更强的传染性和较高的病毒载量成为了当时全球范围内的流行毒株 [2]。随着新发变异毒株在COVID-19全球大流行过程中的不断出现,世界卫生组织(world health organization, WHO)根据变异毒株的传染性、致病性、感染患者临床表现及毒株对现有治疗方案和疫苗接种方案影响等性质,依次将Beta变异株(B.1.351)、Alpha变异株(B.1.1.7)、Delta变异株(B.1.617.2)、Gamma变异株(P.1)列为需要关注的变异株(variants of concern, VOC),以上VOC在某一时期成为了全球的主流毒株,并展示出较高的传染性和一定的免疫逃逸能力 [3]。2021年11月,一种最初在南非博茨瓦纳被发现的SARS-CoV-2变异株被WHO列为VOC,并命名为Omicron,该毒株在较短时间内取代Delta变异株成为当下全球范围内的主要流行变异株 [3] [4] [5]。

与其他VOC相比,Omicron变异株具有传染性强、突变数量多且主要位于其S蛋白、感染患者疾病严重程度较低及较强的免疫逃逸能力等特点 [6] [7]。在目前疫苗得到广泛接种的背景下,Omicron流行仍造成了全球COVID-19日新增确诊病例的大幅上升,提示了早期疫苗接种诱导的预存免疫无法保护健康人群免受该毒株感染 [1]。另一方面,尽管感染Omicron变异株的COVID-19患者的临床症状较轻,但全球日新增死亡病例数仍较Omicron流行前略有上升,说明Omicron毒力下降并不能有效缓解现阶段全球公共卫生系统所面临的压力。本文将基于SARS-CoV-2 Omicron变异株的相关研究,从Omicron变异株的起源、S蛋白各氨基酸残基突变对毒株免疫逃逸能力的贡献和Omicron感染者临床特点等方面对该毒株的特点进行总结,并进一步分析以上特点产生的具体机制。

2. Omicron变异株的起源

目前,关于Omicron变异株的起源,主要有以下四种假说:1) 病毒在一个较小的群体中发生变异并传播,随后通过某种方式扩大感染;2) SARS-CoV-2在免疫低下人群中建立长期感染,并在感染过程中变异进化、最终筛选出积累大量优势突变的变异株;3) 由感染人群将SARS-CoV-2传染给某种动物,毒株在动物体内发生适应性进化,最终回传人类;4) 多种变异株同时感染同一个体,并在其体内发生重组,从而快速积累大量变异 [7] [8]。其中,更多证据指向Omicron变异株来源于免疫低下人群或在动物体内发生适应性进化再回传人类的假说。

2.1. Omicron来源于人与动物间的跨物种传播

结合早期严重急性呼吸综合征冠状病毒和中东呼吸综合征冠状病毒传播途径溯源的结果推测,SARS-CoV-2最初可能通过“天然宿主–中间宿主–人”的模式进行传播,在该模式下,最初感染人类的SARS-CoV-2病毒因对中间宿主和人类宿主的适应程度较低而具有较大的进化空间,SARS-CoV-2利用中间宿主作为传播媒介的同时,也会在中间宿主体内产生相应的适应性进化,进而提升毒株对相关物种和人类宿主的感染能力 [9]。

SARS-CoV-2 S蛋白受体结合域(receptor binding domain, RBD)的493、498和501位氨基酸残基被认为与SARS-CoV-2的跨物种传播密切相关,而Omicron变异株在上述位置分别出现了Q493R、Q498R和N501Y等突变 [10]。另一方面,已有证据表明,SARS-CoV-2可感染猫、狗、狮子、老虎、水貂、雪豹、白尾鹿和小鼠等多种哺乳动物,且Alpha变异株和Delta变异株已分别在猫、狗和亚洲狮体内得到鉴定,进一步说明SARS-CoV-2具有较为广泛的宿主适应能力 [10] [11] [12] [13]。Wei等 [13] 研究者发现,与人类来源的SARS-CoV-2病毒相比,Omicron变异株S蛋白似乎受到了与宿主跳跃相关的正向选择。对Omicron原始毒株突变分子谱的分析发现,Omicron变异株的进化模式与病毒在小鼠细胞内的进化模式相似,提供了Omicron变异株祖先可能在小鼠内发生了一系列适应性突变,并最终回传人类的证据 [13] [14]。

SARS-CoV-2的全球大流行必然会造成大量动物感染并充当中间宿主的角色,结合该病毒传染性高、宿主适应能力强的特点,毒株传播网络的复杂性必然增加。尽管已在多种哺乳动物体内成功分离鉴定SARS-CoV-2病毒,但目前对该病毒跨物种传播发生机制及其在不同物种中的进化特点的研究尚不够深入。明确以上问题并结合已分离毒株的基因组信息将有效推动潜在新发毒株预测工作的进行。因此,有必要对更多不同宿主来源的SARS-CoV-2毒株进行测序,并追踪SARS-CoV-2在关键物种中的进化趋势。

2.2. Omicron变异株来源于免疫低下人群或通过毒株间重组产生

由于免疫低下人群对病毒的清除能力较弱且无法通过接种疫苗获得足够的特异性免疫应答,因此SARS-CoV-2更易在免疫低下人群中建立长期感染,加上大部分免疫功能低下COVID-19患者的感染症状并不明显,进一步为变异株在人群间的隐蔽传播提供机会 [15]。另一方面,单抗药物的使用对免疫低下人群体内SARS-CoV-2病毒造成一定的选择性压力,进而促进病毒产生免疫逃逸相关突变 [15] [16] [17] [18]。综上所述,长期感染及人工选择压力的存在为复制力、传染性更强毒株的产生和传播创造了条件。

免疫低下个体体内分离毒株的测序结果提示了SARS-CoV-2在免疫低下个体中发生进化。S蛋白携带T478K、E484K/Q (Omicron变异株为E484A)、Q493K (Omicron变异株为Q493R)、N440K突变及141至145氨基酸残基发生不同程度缺失的与Omicron变异株关键变异位点特征相似的毒株得到鉴定,一定程度上说明Omicron的起源与免疫低下人群相关 [17] [19]。

He等 [20] 研究者发现,两种不同VOC变异株(Beta变异株和Delta变异株)可以在一段时间内以较为稳定的相对丰度保持对同一个体的共感染。进一步研究发现,部分毒株基因组出现了可能来源于变体间重组造成的中断,该假设在预测重组区域的PCR产物测序中得到进一步验证 [20]。值得注意的是,SARS-CoV-2在对免疫低下个体建立长期感染的过程中会产生异质性,免疫低下个体内多种SARS-CoV-2变体进行重组似乎更符合Omicron变异株存在大量突变的事实 [19]。

尽管目前尚无充足证据表明Omicron变异株所携带突变源自于早期SARS-CoV-2在免疫低下人群中建立的长期感染,但免疫低下人群为毒株的进化、传播及毒株间重组提供了良好环境。因此,需尽可能保护术后康复人员、肿瘤患者、获得性免疫缺陷综合征患者和老年人群等免疫低下人群免受SARS-CoV-2的感染并优化常规治疗方案以帮助免疫低下的COVID-19患者彻底清除SARS-CoV-2病毒,避免长期感染的发生。

3. Omicron变异株S蛋白突变对毒株传染性及免疫逃逸能力的影响

尽管冠状病毒的RNA聚合酶具有校对活性,但SARS-CoV-2仍具有较强的变异能力 [21] [22]。在长期自然选择及疫苗接种等人工选择压力下,SARS-CoV-2病毒获得并积累优势突变 [23]。2020年起,多种传染性增强且具备一定免疫逃逸能力的变异毒株出现并成为当时的流行毒株,后续研究表明,毒株传染性和免疫逃逸能力的提升与S蛋白积累的优势突变密切相关。Omicron变异株在基因组整体突变率未发生明显提升的情况下,S蛋白积累了大量变异,相关突变可能与该毒株较高的传染性和较强的免疫逃逸能力相关 [4] [5] [13] [24]。

S蛋白所介导的受体结合过程和膜融合过程是SARS-CoV-2入侵宿主细胞的关键,该蛋白突变将直接影响S-RBD与受体血管紧张素转换酶II (angiotensin converting enzyme 2, ACE2)的结合,进而影响毒株的感染力;另一方面,S蛋白变异也可能影响其与跨膜丝氨酸蛋白酶TMPRSS2和弗林蛋白酶间的相互作用,造成感染机制改变 [9]。此外,由于S蛋白具有较强的免疫原性,疫苗诱导的大部分中和抗体及前期设计的抗体药物靶向S蛋白各抗原表位,Omicron变异株必然会对早期研发疫苗的保护效果产生影响并造成抗体药物失效。

因此,明确Omicron变异株S蛋白携带突变对S-RBD与受体ACE2和TMPRSS2间相互作用的影响及各突变在宿主免疫逃逸中的贡献(包括对宿主天然免疫系统和对适应性免疫的逃逸)将有助于解释Omicron在人群中传播的优势,为疫苗加强针的研发和接种策略的修订奠定基础。

3.1. S蛋白突变对Omicron传染性和感染机制的影响

Omicron S蛋白突变将直接影响该蛋白的空间结构并改变S-RBD与ACE2间的相互作用。T547K、N764K和N856K等突变改变了S蛋白S1亚基和S2亚基间的电荷接触 [14],而G142D、N764K等突变形成了新的离子相互作用 [25]。从整体上看,Omicron S蛋白突变赋予了该蛋白更强的稳定性 [25]。计算建模、分子动力学模拟及结合自由能预测等信息学分析结果显示:与SARS-CoV-2原始毒株相比,Omicron S-RBD与受体ACE2的结合能力更强且二者间的结合更加稳定 [6] [26] [27] [28] [29] [30]。其中,S477N、N501Y及Q498R等突变显著提升了S-RBD与ACE2间的结合亲和力,并抵消如K417N、G446S、E484A、G496S、Y505H等不利于S-RBD与ACE2结合突变的影响,使得Omicron变异株S蛋白在出现广泛变异的同时仍保持对靶细胞的高度亲和 [6] [14] [31] - [36]。

S477N、N501Y突变分别与ACE2的S19残基、K353残基形成新氢键,且N501Y与ACE2的Y41残基形成π-π堆积作用,增强了Omicron S-RBD与ACE2的结合 [14] [25] [27] [29] [33] [34] [35] [36]。T478K、Q493R、Q498R增加了Omicron RBD结合面的正电荷,其中R493和R498分别与ACE2的E35残基和D38残基相互吸引,并形成了新盐桥 [30] [35]。E484A降低了Omicron RBD结合面的负电荷,但同时也失去了与ACE2 K31残基间原有的接触 [35]。K417N和G446S突变分别造成与ACE2的D30残基和Q42残基间氢键的丢失,而Y505H削弱了S-RBD与ACE2间的范德华力,降低了S-RBD与ACE2间的亲和力 [27] [35]。H655Y、N679K和P981H等突变位于弗林蛋白酶切割位点附近,其中P681H突变提升了S蛋白弗林蛋白酶切割位点的暴露程度并增加该位点与弗林蛋白酶的亲和力,起到增强毒株感染的效果 [23] [31]。

值得注意的是,Omicron变异株的入侵机制可能因S蛋白的变异而发生改变。细胞水平实验证明,在TMPRSS2过表达的Vero E6细胞中,Omicron变异株的复制能力远低于Delta变异株 [37]。进一步将巴佛洛霉素A1 (抑制内吞途径)、氯喹(抑制内吞途径)和卡莫司他(抑制TMPRSS2途径)等抗病毒药物作用于上述两种变异株,发现巴佛洛霉素A1和氯喹可有效抑制Delta变异株和Omicron变异株,而卡莫司他仅对Delta变异株产生明显的抑制效果,提示了Omicron变异株对TMPRSS2的依赖性降低,更多依赖内吞途径实现对靶细胞的感染 [37]。入侵机制的改变造成Omicron变异株对下呼吸道细胞、肺细胞和肠细胞等多种细胞的感染能力下降,这可能是该变异株感染者临床症状较轻的原因之一 [37] [38] [39]。但另一方面,摆脱对TMPRSS2的依赖可能使Omicron变异株对其他无TMPRSS2表达细胞的感染潜力上升。

3.2. S蛋白突变对Omicron变异株免疫逃逸能力的影响

早期研究表明,SARS-CoV-2可有效躲避宿主免疫系统识别并抑制RNA干扰(RNA interference, RNAi)系统、干扰素(interferon, IFN)系统和补体系统等宿主先天防御系统,实现对宿主先天免疫系统的逃逸 [40] - [53]。基因组较低的CpG含量避免了宿主锌指抗病毒蛋白对SARS-CoV-2 RNA的识别 [40],对mRNA进行加帽修饰增加了病毒编码mRNA与宿主编码mRNA的相似性,降低病毒mRNA被识别的风险 [41] [42]。在SARS-CoV-2感染早期,多种淋巴细胞活化相关蛋白和补体系统激活相关蛋白的表达量明显降低,说明该时期宿主淋巴细胞和补体系统受到抑制 [51] [52] [53]。对于RNAi系统,部分SARS-CoV-2编码蛋白(如N蛋白)具有RNAi抑制子的活性,通过与RNAi各阶段关键分子的相互作用阻止RNAi的发生 [43]。而对于IFN系统,多种SARS-CoV-2编码蛋白可抑制IFN-I产生并阻止IFN-I与宿主细胞干扰素受体结合及下游信号通路的激活 [44] - [50]。与Delta变异株相比,Omicron变异株对干扰素系统完全细胞的感染能力下降,而在干扰素应答缺失细胞中拥有较强的复制能力,说明Omicron变异株的IFN拮抗能力下降 [38]。上述现象可能与Omicron变异株编码的具有IFN抑制能力毒蛋白的突变相关。除对宿主IFN系统拮抗能力下降和Δ211/212I、ins214EPE等突变引起的树突状细胞启动抑制外 [31] [38],目前尚无证据表明Omicron变异株对宿主先天防御系统的逃逸与原始SARS-CoV-2毒株存在明显差异,相关问题仍有待进一步研究。

Omicron变异株能有效逃逸早期感染和疫苗接种诱导的适应性免疫应答是该毒株得以迅速取代Delta变异株成为全球流行毒株的关键。S蛋白突变导致的抗原表位丢失是Omicron变异株对中和抗体产生抗性的根本原因。多项早期COVID-19患者恢复期血浆的假病毒中和实验表明:包括Alpha变异株、Beta变异株、Gamma变异株和Delta变异株在内的多种SARS-CoV-2毒株感染诱导的中和抗体对Omicron变异株的中和能力明显下降,且该现象在早期感染者提供的血浆样品中更为明显 [30] [36] [54] [55]。

尽管不同技术路线研发的疫苗在抗原表位选择、免疫应答机制和免疫应答强度上存在差异,但大量证据表明,Omicron变异株对大部分现阶段使用的灭活疫苗、mRNA疫苗和腺病毒载体疫苗诱导的中和抗体产生抗性 [30] [36] [54] [56] [57]。Lu等 [56] 研究者发现,只有不超过25%的BNT162b2接种者体内检测出Omicron的中和抗体,而在CoronaVac接种者中,相关中和抗体未被成功检测。更严重的是,对于体内存在Omicron变异株中和抗体的疫苗接种者,其血浆样品对Omicron变异株的中和能力远低于原始毒株及各VOC毒株 [54] [56] [57]。位于S蛋白的大量突变赋予了Omicron变异株较其他VOC更强的中和抗体抗性,其本质在于原抗原抗体间相互作用的丢失及突变产生的空间位阻对预存免疫抗体与Omicron S蛋白结合的阻碍 [58]。目前,关于Omicron变异株S蛋白各突变在宿主体液免疫逃逸中具体贡献的分析大多建立在此前VOC携带突变的已知效应上,故需进一步评估Omicron变异株特有突变所产生的效应与新旧突变位点间的相互作用,以更好阐明SARS-CoV-2的免疫逃逸机制 [59]。

在Omicron变异株流行期间,需格外警惕抗体依赖性增强(Antibody-Dependent Enhancement, ADE)感染和毒株血清型变化的发生。当宿主体内中和抗体的保护效力低于某一阈值时,非中和抗体介导的ADE感染可能使Omicron变异株获得感染无ACE2表达细胞的能力(主要是免疫细胞) [60] [61] [62]。另一方面,Omicron变异株对疫苗接种者和早期感染康复者体液免疫应答的广泛逃逸提示了SARS-CoV-2可能在进化过程中产生了新的血清型 [63]。新血清型毒株的产生将对目前的疫苗接种策略和相关临床治疗药物(尤其是抗体类药物)的使用产生巨大影响。已知多款早期研发的抗体类药物对Omicron变异株的亲和能力因抗体结合位点的变异而显著下降(表1为Omicron变异株S蛋白突变对抗体药物的具体影响) [6] [14] [26] [36] [55] [64]。

Table 1. Effect of S mutation of Omicron variant on antibody drugs

表1. Omicron变异株S蛋白变异对抗体药物的影响

尽管Omicron变异株对疫苗诱导的体液免疫应答展现出较强的逃逸能力,但值得庆幸的是,T细胞免疫应答似乎可为疫苗接种人群提供更长效保护,以减轻感染者的感染症状 [66] [67]。一方面,超1400个T细胞表位广泛分布于SARS-CoV-2编码的多个结构蛋白、非结构蛋白和辅助蛋白,病毒变异对T细胞表位的影响较小 [68] [69]。Geurtsvan Kessel等 [66] 研究者发现,Omicron变异株及其他VOC诱导的特异性CD4 + T细胞免疫应答和CD8 + T细胞免疫应答与原始SARS-CoV-2相比无明显差异,由感染或疫苗接种诱导的记忆T细胞仍可对Omicron变异株产生免疫应答 [68] [70]。与特异性体液免疫应答相比,特异性细胞免疫应答更具长效保护力,早期感染及疫苗诱导的T细胞免疫应答至少可维持6~8个月 [66] [67] [71]。此外,Omicron变异株S蛋白不携带L452R和Y453F等细胞免疫逃逸相关突变,进一步提示了细胞免疫可在Omicron变异株感染、致病过程中发挥重要作用 [72] [73]。由于对特异性T细胞的定量分析在技术上存在较大难度,故现阶段难以准确评价疫苗诱导的T细胞免疫在抗病毒过程中的具体贡献。

另一方面,大量研究表明,采用不同技术路线加强疫苗进行加强免疫均可有效提升加强疫苗接种人群的特异性体液免疫应答水平,且异源加强的效果要明显优于同源加强 [36] [54] [55] [74] [75] [76]。Costa等研究者以6月前接种两剂CoronaVac灭活疫苗的成年人为加强免疫对象,比较了CoronaVac同源加强及BNT162b2、ChAdOx1 nCoV-19、Ad26 COV2-S三种异源加强策略对加强接种后接种者体内S蛋白特异性IgG水平和血浆假病毒中和能力的影响 [75]。该研究的结果表明,同源加强或异源加强均可提升接种者体内特异性体液免疫应答水平,且异源加强的效果更为明显,在三种异源加强策略中,mRNA加强疫苗的效果要优于其它两款腺病毒载体疫苗 [75],在同源加强中,mRNA加强疫苗也展示出更好的免疫效果 [36]。

mRNA加强疫苗可诱导更强的体液免疫应答,提示了mRNA异源加强策略具有较好的保护效果。腺病毒载体疫苗可同时诱导强烈黏膜反应和细胞免疫应答的优势及重组蛋白疫苗较高的安全性为疫苗加强接种提供了更多选择 [77]。因此,有必要进一步评估加强免疫诱导的细胞免疫应答和黏膜免疫应答在防止SARS-CoV-2感染中发挥的具体作用,并对使用不同技术路线疫苗完成全程接种的人群分别制定较优的加强免疫策略。此外,加强免疫的有效性和安全性仍是加强免疫实行过程中需要关注的问题。一方面,Omicron变异株及潜在新发变异株的血清学特征可能与过往毒株存在较大差异,基于早期SARS-CoV-2病毒序列设计的疫苗难以为接种人群提供有效保护 [63]。另一方面,过快、过频地进行加强接种也可能放大部分疫苗的副作用,提升接种人群的安全风险 [78] [79]。

4. Omicron变异株的致病性

对来源于不同国家地区的多项Omicron变异株感染相关的临床研究报告进行分析,发现和此前Delta变异株流行时期的患者相比,Omicron变异株感染者的住院率(与疾病严重程度相关)和死亡率较低,提示了Omicron变异株较低的致病性 [80] [81] [82] [83]。Omicron感染者常见的临床症状为咳嗽、喉咙痛、流鼻涕、疲劳嗜睡、发烧等,有少数患者出现味觉丢失的症状 [84] [85]。

Omicron变异株致病性较低可能与疫苗接种相关。尽管接种疫苗无法有效避免Omicron的感染,但接种诱导的体液免疫应答和细胞免疫应答可减轻COVID-19患者的临床症状 [82] [84]。Modes等 [82] 研究者指出,感染Omicron变异株的COVID-19重症患者的死亡率因疫苗接种降低,且疫苗对Omicron变异株感染者的保护效果要优于Delta变异株感染者。Brandal等研究者的报告也提示了疫苗接种对应了Omicron感染者较低的住院率 [84]。此外Omicron变异株感染模式的改变和毒株较低的IFN拮抗能力也可能是Omicron感染者临床症状减轻的原因 [37] [38]。Omicron变异株更依赖于内吞途径入侵宿主细胞,导致该毒株在下呼吸道细胞、肺细胞和肠细胞中的复制能力减弱 [37] [39];IFN系统活化可作用于SARS-CoV-2入侵、复制、释放等各个阶段,该系统的适度激活有助于COVID-19患者临床症状减轻 [86]。

尽管Omicron变异株展现出较低的致病性,但并不意味着该变异株造成的感染是“温和”的。WHO公布的数据显示,Omicron变异株流行期间全球日新增死亡病例数较Delta变异株流行时期仍出现一定上升 [1]。说明寄希望于利用Omicron致病性减弱实现群体免疫以降低疫情防控成本的策略并不可取,仍有必要继续坚持动态清零策略,防止Omicron变异株在国内传播。

5. 结语

具有高传染性、强免疫逃逸能力等特点的Omicron变异株的传播蔓延造成全球新增病例居高不下,对全球公共卫生安全构成巨大威胁。更糟糕的是,Omicron变异株在流行期间发生了进一步变异,BA.2 (B.1.1.529.2)、BA.3 (B.1.1.529.3)等Omicron新亚型毒株陆续被发现鉴定 [87] [88]。深度学习模型的评估结果显示:BA.2亚型具有较原始Omicron变异株更强的传染性 [87]。

为实现对Omicron各变体及潜在新发毒株的有效防控,首先需要明确界定Omicron变异株是否属于新血清型毒株,并探究S蛋白各氨基酸残基突变对毒株抗原性质、感染机制和逃逸能力的影响。上述研究进展有助于评估现有免疫策略及加强免疫策略的有效性,为相关策略的修订及新型抗体药物的设计研发奠定基础。其次,需进一步探究SARS-CoV-2在免疫低下人群中的进化特征,并为相应群体专门制定更有效的疫苗接种策略和临床治疗方案,尽可能避免SARS-CoV-2对免疫低下人群的长期感染。第三,应加强对入境货物、冷链物品及处于高位环境物品的核酸检测,降低高传染性毒株物传人风险 [89];也有必要建立更全面的变异毒株预警机制,如对疫情流行地区生活污水中的病毒颗粒进行监测,追踪新变异毒株的出现及其可能的传播路径 [90] [91]。此外,仍然需要进一步探究疫苗诱导的细胞免疫应答和黏膜免疫反应及各天然免疫系统在SARS-CoV-2感染各阶段发挥的具体作用,进一步为COVID-19临床治疗药物的筛选及新型疫苗的设计研发提供理论依据。

参考文献

[1] World Health Organization (2022, February 21) WHO Coronavirus Disease (COVID-19) Dashboard.
https://covid19.who.int/
[2] Yurkovetskiy, L., Wang, X., Pascal, K.E., et al. (2020) Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 183, 739-751.E8.
https://doi.org/10.1016/j.cell.2020.09.032
[3] World Health Organization (n.d.) Tracking SARS-CoV-2 Variants.
https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/
[4] GISAID (2022) Tracking of Variants.
https://www.gisaid.org/hcov19-variants/
[5] PANGO (2022) PANGO Lineages: Latest Epidemiological Lineages of SARS-CoV-2.
https://cov-lineages.org/global_report_B.1.1.529.html
[6] Chen, J., Wang, R., Gilby, N.B., et al. (2022) Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance. Journal of Chemical Information and Modeling, 62, 412-422.
https://doi.org/10.1021/acs.jcim.1c01451
[7] 吴俣, 刘珏, 刘民, 等. 新型冠状病毒Omicron变异株的流行病学特征及防控研究[J]. 中国全科医学, 2022, 25(1): 14-19.
[8] Khandia, R., Singhal, S., Alqahtani, T., et al. (2022) Emergence of SARS-CoV-2 Omicron (B.1.1.529) Variant, Salient Features, High Global Health Concerns and Strategies to Counter It Amid Ongoing COVID-19 Pandemic. Environmental Research, 209, Article ID: 112816.
https://doi.org/10.1016/j.envres.2022.112816
[9] 王康泓. SARS-CoV-2感染机制分析与COVID-19治疗药物研究进展[J]. 生命科学研究, 2020, 24(6): 442-451.
[10] Gao, G.F. and Wang, L. (2021) COVID-19 Expands Its Territories from Humans to Animals. China CDC Weekly, 3, 855-858.
https://doi.org/10.46234/ccdcw2021.210
[11] Mishra, A., Kumar, N., Bhatia, S., et al. (2021) SARS-CoV-2 Delta Variant among Asiatic Lions, India. Emerging Infectious Diseases, 27, 2723-2725.
https://doi.org/10.3201/eid2710.211500
[12] Ferasin, L., Fritz, M., Ferasin, H., et al. (2021) Infection with SARS-CoV-2 variant, B.1.1.7 Detected in a Group of Dogs and Cats with Suspected Myocarditis. Veterinary Record, 189, e944.
https://doi.org/10.1002/vetr.944
[13] Wei, C., Shan, K.J., Wang, W., et al. (2021) Evidence for a Mouse Origin of the SARS-CoV-2 Omicron Variant. Journal of Genetics and Genomics, 48, 1111-1121.
https://doi.org/10.1016/j.jgg.2021.12.003
[14] McCallum, M., Czudnochowski, N., Rosen, L.E., et al. (2022) Structural Basis of SARS-CoV-2 Omicron Immune Evasion and Receptor Engagement. Science, 375, 864-868.
https://doi.org/10.1126/science.abn8652
[15] 周玉霞, 王彩红, 姚晓文, 等. 免疫抑制人群与SARS-CoV-2变异相关性研究进展[J]. 海南医学院学报, 2022(5): 321-325.
[16] Jensen, B., Luebke, N., Feldt, T., et al. (2021) Emergence of the E484K Mutation in SARS-CoV-2-Infected Immunocompromised Patients Treated with Bamlanivimab in Germany. The Lancet Regional Health—Europe, 8, Article ID: Article ID: 100164.
https://doi.org/10.1016/j.lanepe.2021.100164
[17] Choi, B., Choudhary, M.C., Regan, J., et al. (2020) Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host. New England Journal of Medicine, 383, 2291-2293.
https://doi.org/10.1056/NEJMc2031364
[18] Avanzato, V.A., Matson, M.J., Seifert, S.N., et al. (2020) Case Study: Prolonged Infectious SARS-CoV-2 Shedding from an Asymptomatic Immunocompromised Individual with Cancer. Cell, 183, 1901-1912.e9.
https://doi.org/10.1016/j.cell.2020.10.049
[19] Truong, T.T., Ryutov, A., Pandey, U., et al. (2021) Increased Viral Variants in Children and Young Adults with Impaired Humoral Immunity and Persistent SARS-CoV-2 Infection: A Consecutive Case Series. EBioMedicine, 67, Article ID: 103355.
https://doi.org/10.1016/j.ebiom.2021.103355
[20] He, Y., Ma, W., Dang, S., et al. (2022) Possible Recombination between Two Variants of Concern in a COVID-19 Patient. Emerging Microbes & Infections, 11, 552-555.
https://doi.org/10.1080/22221751.2022.2032375
[21] Minskaia, E., Hertzig, T., Gorbalenya, A.E., et al. (2006) Discovery of an RNA Virus 3’→5’ Exoribonuclease That Is Critically Involved in Coronavirus RNA Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 103, 5108-5113.
https://doi.org/10.1073/pnas.0508200103
[22] McCarthy, K.R., Rennick, L.J., Nambulli, S., et al. (2021) Recurrent Deletions in the SARS-CoV-2 Spike Glycoprotein Drive Antibody Escape. Science, 371, 1139-1142.
https://doi.org/10.1126/science.abf6950
[23] Papanikolaou, V., Chrysovergis, A., Ragos, V., et al. (2022) From Delta to Omicron: S1-RBD/S2 Mutation/Deletion Equilibrium in SARS-CoV-2 Defined Variants. Gene, 814, Article ID: 146134.
https://doi.org/10.1016/j.gene.2021.146134
[24] CoVariants (2022) Variant: 21K (Omicron).
https://covariants.org/variants/21K.Omicron
[25] Koley, T., Kumar, M., Goswami, A., et al. (2022) Structural Modeling of Omicron Spike Protein and Its Complex with Human ACE-2 Receptor: Molecular Basis for High Transmissibility of the Virus. Biochemical and Biophysical Research Communications, 592, 51-53.
https://doi.org/10.1016/j.bbrc.2021.12.082
[26] Wu, L., Zhou, L., Mo, M., et al. (2022) SARS-CoV-2 Omicron RBD Shows Weaker Binding Affinity than the Currently Dominant Delta Variant to Human ACE2. Signal Transduction and Targeted Therapy, 7, Article No. 8.
https://doi.org/10.1038/s41392-021-00863-2
[27] Lupala, C.S., Ye, Y., Chen, H., et al. (2022) Mutations on RBD of SARS-CoV-2 Omicron Variant Result in Stronger Binding to Human ACE2 Receptor. Biochemical and Biophysical Research Communications, 590, 34-41.
https://doi.org/10.1016/j.bbrc.2021.12.079
[28] Khan, A., Waris, H., Rafique, M., et al. (2022) The Omicron (B.1.1.529) Variant of SARS-CoV-2 Binds to the hACE2 Receptor More Strongly and Escapes the Antibody Response: Insights from Structural and Simulation Data. International Journal of Biological Macromolecules, 200, 438-448.
https://doi.org/10.1016/j.ijbiomac.2022.01.059
[29] Omotuyi, O., Olubiyi, O., Nash, O., et al. (2022) SARS-CoV-2 Omicron Spike Glycoprotein Receptor Binding Domain Exhibits Super-Binder Ability with ACE2 but Not Convalescent Monoclonal Antibody. Computers in Biology and Medicine, 142, Article ID: 105226.
https://doi.org/10.1016/j.compbiomed.2022.105226
[30] Mannar, D., Saville, J.W., Zhu, X., et al. (2022) SARS-CoV-2 Omicron Variant: Antibody Evasion and Cryo-EM Structure of Spike Protein-ACE2 Complex. Science, 375, 760-764.
https://doi.org/10.1126/science.abn7760
[31] Fang, F.F. and Shi, P.Y. (2022) Omicron: A Drug Developer’s Perspective. Emerging Microbes & Infections, 11, 208-211.
https://doi.org/10.1080/22221751.2021.2023330
[32] Zahradník, J., Marciano, S., Shemesh, M., et al. (2021) SARS-CoV-2 Variant Prediction and Antiviral Drug Design Are Enabled by RBD In Vitro Evolution. Nature Microbiology, 6, 1188-1198.
https://doi.org/10.1038/s41564-021-00954-4
[33] Sharma, V., Rai, H., Gautam, D.N.S., et al. (2022) Emerging Evidence on Omicron (B.1.1.529) SARS-CoV-2 Variant. Journal of Medical Virology, 94, 1876-1885.
https://doi.org/10.1002/jmv.27626
[34] Singh, A., Steinkellner, G., Köchl, K., et al. (2021) Serine 477 Plays a Crucial Role in the Interaction of the SARS-CoV-2 Spike Protein with the Human Receptor ACE2. Scientific Reports, 11, Article No. 4320.
https://doi.org/10.1038/s41598-021-83761-5
[35] Han, P., Li, L., Liu, S., et al. (2022) Receptor Binding and Complex Structures of Human ACE2 to Spike RBD from Omicron and Delta SARS-CoV-2. Cell, 185, 630-640.e10.
https://doi.org/10.1016/j.cell.2022.01.001
[36] Dejnirattisai, W., Huo, J., Zhou, D., et al. (2022) SARS-CoV-2 Omicron-B.1.1.529 Leads to Widespread Escape from Neutralizing Antibody Responses. Cell, 185, 467-484.e15.
https://doi.org/10.1016/j.cell.2021.12.046
[37] Zhao, H., Lu, L., Peng, Z., et al. (2022) SARS-CoV-2 Omicron Variant Shows Less Efficient Replication and Fusion Activity When Compared with Delta Variant in TMPRSS2-Expressed Cells. Emerging Microbes & Infections, 11, 277-283.
https://doi.org/10.1080/22221751.2021.2023329
[38] Bojkova, D., Widera, M., Ciesek, S., et al. (2022) Reduced Interferon Antagonism but Similar Drug Sensitivity in Omicron Variant Compared to Delta Variant of SARS-CoV-2 Isolates. Cell Research, 32, 319-321.
https://doi.org/10.1038/s41422-022-00619-9
[39] Meng, B., Abdullahi, A., Ferreira, I.A.T.M., et al. (2022) Altered TMPRSS2 Usage by SARS-CoV-2 Omicron Impacts Tropism and Fusogenicity. Nature, 603, 709-714.
[40] Xia, X. (2020) Extreme Genomic CpG Deficiency in SARS-CoV-2 and Evasion of Host Antiviral Defense. Molecular Biology and Evolution, 37, 2699-2705.
https://doi.org/10.1093/molbev/msaa094
[41] Viswanathan, T., Arya, S., Chan, S.H., et al. (2020) Structural Basis of RNA cap Modification by SARS-CoV-2. Nature Communications, 11, Article No. 3718.
https://doi.org/10.1038/s41467-020-17496-8
[42] Yan, L., Yang, Y., Li, M., et al. (2021) Coupling of N7-Methyltransferase and 3’-5’Exoribonuclease with SARS-CoV-2 Polymerase Reveals Mechanisms for Capping and Proofreading. Cell, 184, 3474-3485.E11.
https://doi.org/10.1016/j.cell.2021.05.033
[43] Mu, J., Xu, J., Zhang, L., et al. (2020) SARS-CoV-2-Encoded Nucleocapsid Protein Acts as a Viral Suppressor of RNA Interference in Cells. Science China Life Sciences, 63, 1413-1416.
https://doi.org/10.1007/s11427-020-1692-1
[44] Fu, Y.Z., Wang, S.Y., Zheng, Z.Q., et al. (2021) SARS-CoV-2 Membrane Glycoprotein M Antagonizes the MAVS-Mediated Innate Antiviral Response. Cellular & Molecular Immunology, 18, 613-620.
https://doi.org/10.1038/s41423-020-00571-x
[45] Xia, H., Cao, Z., Xie, X., et al. (2020) Evasion of Type I Interferon by SARS-CoV-2. Cell Reports, 33, Article ID: 108234.
https://doi.org/10.1016/j.celrep.2020.108234
[46] Chen, K., Xiao, F., Hu, D., et al. (2020) SARS-CoV-2 Nucleocapsid Protein Interacts with RIG-I and Represses RIG-Mediated IFN-β Production. Viruses, 13, Article No. 47.
https://doi.org/10.3390/v13010047
[47] Li, J.Y., Liao, C.H., Wang, Q., et al. (2020) The ORF6, ORF8 and Nucleocapsid Proteins of SARS-CoV-2 Inhibit Type I Interferon Signaling Pathway. Virus Research, 286, Article ID: 198074.
https://doi.org/10.1016/j.virusres.2020.198074
[48] Mu, J., Fang, Y., Yang, Q., et al. (2020) SARS-CoV-2 N Protein Antagonizes Type I Interferon Signaling by Suppressing Phosphorylation and Nuclear Translocation of STAT1 and STAT2. Cell Discovery, 6, Article No. 65.
https://doi.org/10.1038/s41421-020-00208-3
[49] Cao, Z., Xia, H., Rajsbaum, R., et al. (2021) Ubiquitination of SARS-CoV-2 ORF7a Promotes Antagonism of Interferon Response. Cellular & Molecular Immunology, 18, 746-748.
https://doi.org/10.1038/s41423-020-00603-6
[50] 马睿忆, 董晓婧, 肖霞, 等. SARS-CoV-2非结构蛋白1抑制Ⅰ型干扰素应答反应[J]. 国际病毒学杂志, 2021, 28(2): 116-119.
[51] Polycarpou, A., Howard, M., Farrar, C.A., et al. (2020) Rationale for Targeting Complement in COVID-19. EMBO Molecular Medicine, 12, Article No. e12642.
https://doi.org/10.15252/emmm.202012642
[52] Noris, M., Benigni, A., Remuzzi, G. (2020) The Case of Complement Activation in COVID-19 Multiorgan Impact. Kidney International, 98, 314-322.
https://doi.org/10.1016/j.kint.2020.05.013
[53] Tian, W., Zhang, N., Jin, R., et al. (2020) Immune Suppression in the Early Stage of COVID-19 Disease. Nature Communications, 11, Article No. 5859.
https://doi.org/10.1038/s41467-020-19706-9
[54] Schmidt, F., Muecksch, F., Weisblum, Y., et al. (2021) Plasma Neutralization Properties of the SARS-CoV-2 Omicron Variant. medRxiv.
https://doi.org/10.1101/2021.12.12.21267646
[55] YangYang, Gong, X., Yang, L., et al. (2022) Regular and Booster Vaccination with Inactivated Vaccines Enhance the Neutralizing Activity against Omicron Variant both in the Breakthrough Infections and Vaccines. Journal of Infection, 84, 579-613.
https://doi.org/10.1016/j.jinf.2022.01.004
[56] Lu, L., Mok, B.W., Chen, L.L., et al. (2021) Neutralization of SARS-CoV-2 Omicron Variant by Sera from BNT162b2 or Coronavac Vaccine Recipients. Clinical Infectious Diseases.
https://doi.org/10.1101/2021.12.13.21267668
[57] Dejnirattisai, W., Shaw, R.H., Supasa, P., et al. (2022) Reduced Neutralisation of SARS-CoV-2 Omicron, B.1.1.529 Variant by Post-Immunisation Serum. Lancet, 399, 234-236.
https://doi.org/10.1016/S0140-6736(21)02844-0
[58] Kannan, S.R., Spratt, A.N., Sharma, K., et al. (2022) Omicron SARS-CoV-2 Variant: Unique Features and Their Impact on Pre-Existing Antibodies. Journal of Autoimmunity, 126, Article ID: 102779.
https://doi.org/10.1016/j.jaut.2021.102779
[59] Hu, J., Peng, P., Cao, X., et al. (2022) Increased Immune Escape of the New SARS-CoV-2 Variant of Concern Omicron. Cellular & Molecular Immunology, 19, 293-295.
https://doi.org/10.1038/s41423-021-00836-z
[60] Wang, S.F., Tseng, S.P., Yen, C.H., et al. (2014) Antibody-Dependent SARS Coronavirus Infection Is Mediated by Antibodies against Spike Proteins. Biochemical and Biophysical Research Communications, 451, 208-214.
https://doi.org/10.1016/j.bbrc.2014.07.090
[61] Smatti, M.K., Al Thani, A.A., Yassine, H.M. (2018) Viral-Induced Enhanced Disease Illness. Frontiers in Microbiology, 9, Article No. 2991.
https://doi.org/10.3389/fmicb.2018.02991
[62] Liu, Y., Soh, W.T., Kishikawa, J.I., et al. (2021) An Infectivity-Enhancing Site on the SARS-CoV-2 Spike Protein Targeted by Antibodies. Cell, 184, 3452-3466.E18.
https://doi.org/10.1016/j.cell.2021.05.032
[63] Simon-Loriere, E. and Schwartz, O. (2022) Towards SARS-CoV-2 Serotypes? Nature Reviews Microbiology, 20, 187-188.
https://doi.org/10.1038/s41579-022-00708-x
[64] Liu, L., Iketani, S., Guo, Y., et al. (2022) Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature, 602, 676-681.
https://doi.org/10.1038/s41586-021-04388-0
[65] Guigon, A., Faure, E., Lemaire, C., et al. (2022) Emergence of Q493R Mutation in SARS-CoV-2 Spike Protein during Bamlanivimab/Etesevimab Treatment and Resistance to Viral Clearance. Journal of Infection, 84, 248-288.
https://doi.org/10.1016/j.jinf.2021.08.033
[66] Geurtsvan Kessel, C.H., Geers, D., Schmitz, K.S., et al. (2022) Divergent SARS CoV-2 Omicron-Reactive T- and B Cell Responses in COVID-19 Vaccine Recipients. Science Immunology, 7, eabo2202.
https://doi.org/10.1126/sciimmunol.abo2202
[67] Bertoletti, A., Le Bert, N., Qui, M., et al. (2021) SARS-CoV-2-Specific T Cells in Infection and Vaccination. Cellular & Molecular Immunology, 18, 2307-2312.
https://doi.org/10.1038/s41423-021-00743-3
[68] Choi, S.J., Kim, D.U., Noh, J.Y., et al. (2022) T Cell Epitopes in SARS-CoV-2 Proteins Are Substantially Conserved in the Omicron Variant. Cellular & Molecular Immunology, 19, 447-448.
https://doi.org/10.1038/s41423-022-00838-5
[69] Grifoni, A., Sidney, J., Vita, R., et al. (2021) SARS-CoV-2 Human T Cell Epitopes: Adaptive Immune Response against COVID-19. Cell Host & Microbe, 29, 1076-1092.
https://doi.org/10.1016/j.chom.2021.05.010
[70] Gao, Y., Cai, C., Grifoni, A., et al. (2022) Ancestral SARS-CoV-2-Specific T Cells Cross-Recognize the Omicron Variant. Nature Medicine, 28, 472-476.
https://doi.org/10.1038/d41591-022-00017-z
[71] Sherina, N., Piralla, A., Du, L., et al. (2021) Persistence of SARS-CoV-2-Specific B and T Cell Responses in Convalescent COVID-19 Patients 6-8 Months after the Infection. Med, 2, 281-295.e4.
https://doi.org/10.1016/j.medj.2021.02.001
[72] Fantini, J., Yahi, N., Colson, P., et al. (2022) The Puzzling Mutational Landscape of the SARS-2-Variant Omicron. Journal of Medical Virology, 94, 2019-2025.
https://doi.org/10.1002/jmv.27577
[73] Motozono, C., Toyoda, M., Zahradnik, J., et al. (2021) SARS-CoV-2 Spike L452R Variant Evades Cellular Immunity and Increases Infectivity. Cell Host & Microbe, 29, 1124-1136.e11.
https://doi.org/10.1016/j.chom.2021.06.006
[74] Mok, C.K.P., Cheng, S.M.S., Chen, C., et al. (2022) A RCT Using CoronaVac or BNT162b2 Vaccine as a Third Dose in Adults Vaccinated with Two Doses of CoronaVac. American Journal of Respiratory and Critical Care Medicine, 205, 844-847.
https://doi.org/10.1164/rccm.202111-2655le
[75] Costa Clemens, S.A., Weckx, L., Clemens, R., et al. (2022) Heterologous versus Homologous COVID-19 Booster Vaccination in Previous Recipients of Two Doses of CoronaVac COVID-19 Vaccine in Brazil (RHH-001): A Phase 4, Non-Inferiority, Single Blind, Randomised Study. Lancet, 399, 521-529.
https://doi.org/10.1016/S0140-6736(22)00094-0
[76] Cao, Y., Hao, X., Wang, X., et al. (2022) Humoral Immunogenicity and Reactogenicity of CoronaVac or ZF2001 Booster after Two Doses of Inactivated Vaccine. Cell Research, 32, 107-109.
https://doi.org/10.1038/s41422-021-00596-5
[77] 王康泓, 丁崇正. SARS-CoV-2抗原表位分析及相关疫苗研发的进展与挑战[J]. 微生物学通报, 2021, 48(1): 241-252.
[78] Krause, P.R., Fleming, T.R., Peto, R., et al. (2021) Considerations in Boosting COVID-19 Vaccine Immune Responses. Lancet, 398, 1377-1380.
https://doi.org/10.1016/S0140-6736(21)02046-8
[79] 岳小林, 王雅葳, 王欣. 新型冠状病毒肺炎mRNA疫苗相关淋巴结病的研究现状[J]. 药物不良反应杂志, 2021, 23(11): 592-596.
[80] Wolter, N., Jassat, W., Walaza, S., et al. (2022) Early Assessment of the Clinical Severity of the SARS-CoV-2 Omicron Variant in South Africa: A Data Linkage Study. Lancet, 399, 437-446.
https://doi.org/10.1016/S0140-6736(22)00017-4
[81] Abdullah, F., Myers, J., Basu, D., et al. (2022) Decreased Severity of Disease during the First Global Omicron Variant Covid-19 Outbreak in a Large Hospital in Tshwane, South Africa. International Journal of Infectious Diseases, 116, 38-42.
https://doi.org/10.1016/j.ijid.2021.12.357
[82] Modes, M.E., Directo, M.P., Melgar, M., et al. (2022) Clinical Characteristics and Outcomes among Adults Hospitalized with Laboratory-Confirmed SARS-CoV-2 Infection During Periods of, B.1.617.2 (Delta) and, B.1.1.529 (Omicron) Variant Predominance—One Hospital, California, July 15-September 23, 2021, and December 21, 2021-January 27, 2022. Morbidity and Mortality Weekly Report, 71, 217-223.
https://doi.org/10.15585/mmwr.mm7106e2
[83] Espenhain, L., Funk, T., Overvad, M., et al. (2021) Epidemiological Characterisation of the First 785 SARS-CoV-2 Omicron Variant Cases in Denmark, December 2021. Euro Surveill, 26, Article ID: 2101146.
https://doi.org/10.2807/1560-7917.ES.2021.26.50.2101146
[84] Brandal, L.T., MacDonald, E., Veneti, L., et al. (2021) Outbreak Caused by the SARS-CoV-2 Omicron Variant in Norway, November to December 2021. Euro Surveill, 26, Article ID: 2101147.
https://doi.org/10.2807/1560-7917.ES.2021.26.50.2101147
[85] Kim, M.K., Lee, B., Choi, Y.Y., et al. (2022) Clinical Characteristics of 40 Patients Infected with the SARS-CoV-2 Omicron Variant in Korea. Journal of Korean Medical Science, 37, e31.
https://doi.org/10.3346/jkms.2022.37.e31
[86] Lopez, L., Sang, P.C., Tian, Y., et al. (2020) Dysregulated Interferon Response Underlying Severe COVID-19. Viruses, 12, 1433.
https://doi.org/10.3390/v12121433
[87] Chen, J. and Wei, G.W. (2022) Omicron, B.A.2 (B.1.1.529.2): High Potential to Becoming the Next Dominating Variant. Preprint. ArXiv, arXiv:2202.05031v1.
https://doi.org/10.21203/rs.3.rs-1362445/v1
[88] Desingu, P.A. and Nagarajan, K. (2022) Omicron, BA.2 Lineage Spreads in Clusters and Is Concentrated in Denmark. Journal of Medical Virology, 94, 2360-2364.
https://doi.org/10.1002/jmv.27659
[89] 孙丹, 杨金燕, 夏婷婷, 等. 新型冠状病毒Omicron变异株的流行病学特征及防控研究进展[J/OL]. 中华医院感染学杂志: 1-5.
https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CAPJ&dbname=CAPJLAST&filename=ZHYY2022050500W&uniplatform=NZKPT&v=yXnxOaaFz0JYxfn59cmAFggCl7dOYH5WuTcuLg4xRhd0n-XgLDq0ghztaFoQ1neC, 2022-02-11.
[90] Ahmed, W., Bivins, A., Smith, W.J.M., et al. (2022) Detection of the Omicron (B.1.1.529) Variant of SARS-CoV-2 in Aircraft Wastewater. Science of the Total Environment, 820, Article ID: 153171.
https://doi.org/10.1016/j.scitotenv.2022.153171
[91] Kirby, A.E., Welsh, R.M., Marsh, Z.A., et al. (2022) Notes from the Field: Early Evidence of the SARS-CoV-2 B.1.1.529 (Omicron) Variant in Community Wastewater—United States, November-December 2021. Morbidity and Mortality Weekly Report, 71, 103-105.
https://doi.org/10.15585/mmwr.mm7103a5