B7家族成员B7H6在肿瘤中的研究进展
Research Progress of B7H6, a Member of B7 Family, in Tumors
DOI: 10.12677/ACM.2022.127887, PDF, HTML, XML, 下载: 373  浏览: 772 
作者: 李德勤:滨州医学院第二临床医学院,山东 烟台;青岛大学附属烟台毓璜顶医院,肿瘤内一科,山东 烟台;陈 剑*:青岛大学附属烟台毓璜顶医院,肿瘤内一科,山东 烟台
关键词: B7H6Nkp30癌症免疫治疗B7H6 Nkp30 Cancer Immunotherapy
摘要: B7H6又称NCR3LG1,是NK细胞表面受体NKp30的配体。NK细胞是先天免疫细胞,在识别和杀死肿瘤细胞方面发挥着关键作用。B7H6在不同类型的癌症中表达,并且与预后良好或不良相关。B7H6通过调节肿瘤生物学行为发挥多方面的作用。目前B7H6可能成为免疫治疗的关键潜在靶点。
Abstract: B7H6, also known as NCR3LG1, is the ligand of natural killer cell surface receptor NKp30. NK cells are innate immune cells that play a key role in recognizing and killing tumor cells. B7H6 expresses in different types of human cancer, and has been associated with either good or poor prognosis. B7H6 plays a multifaceted role by modulating various events of tumor biology. B7H6 is now recog-nized as a potential and critical target to immunotherapy.
文章引用:李德勤, 陈剑. B7家族成员B7H6在肿瘤中的研究进展[J]. 临床医学进展, 2022, 12(7): 6149-6155. https://doi.org/10.12677/ACM.2022.127887

1. 引言

自然杀伤细胞(Natural killer cells, NK cells)是免疫系统识别和杀死肿瘤或感染细胞的最有效的细胞之一 [1]。NK细胞增强抗体和T细胞反应的独特特性支持了NK细胞的抗癌作用 [2]。一旦激活NK细胞,它将通过释放穿孔素和颗粒酶裂解肿瘤细胞,分泌细胞因子如干扰素γ (interferon γ, IFN-γ)、肿瘤坏死因子-α (Tumor Necrosis Factor, TNF-α)来增加Fas配体和肿瘤坏死相关凋亡诱导配体的表达 [3]。

根据对T细胞的活化作用,B7家族成员被分为共刺激分子和共抑制分子 [4]。最著名的成员B7H1又称为细胞程序性死亡–配体1 (Programmed cell death 1 ligand 1, PD-L1)通过活化T细胞表面的CD28受体激发T细胞。程序性死亡受体1 (Programmed cell death 1, PD-1)/PD-L1作为最突出的免疫检查点在免疫治疗方面取得了巨大进展 [5]。这些在各种癌症中都得到了强调,它们的治疗进展鼓励研究人员探索B7家族的其他靶点 [6]。目前,新的B7家族配体B7H6已在癌症研究中脱颖而出。本文的目的是深入了解B7H6在肿瘤中发挥的多方面作用,并为未来的研究提出一些展望。

2. B7H6的发现

B7H6又称为NCR3LG1是B7家族的新成员,在大多数正常的人类细胞中检测不到,但在肿瘤细胞表面表达,于2009年首次由brandt发现 [7]。B7H6位于染色体11p15.1区域,编码包含454个氨基酸的长链,分子质量为约51 kDa。最近发现B7H6是NKp30受体的一种细胞配体 [7]。天然细胞毒性受体NKp30是NK细胞上表达的重要激活受体,参与NK细胞介导的靶细胞杀伤。

3. B7H6的表达模式

NK细胞直接通过细胞毒性或间接通过诱导免疫细胞分泌细胞因子消除表达B7H6的肿瘤细胞 [7]。这突出了肿瘤诱导的B7H6在先天免疫中的作用。可溶性B7H6的水平在健康个体中相对较低或不存在。Rusakiewicz [8] 等检测胃肠道间质瘤(Gastrointestinal stromal tumor, GIST)患者可溶性B7H6水平,发现有转移的GIST患者B7H6表达高于局限性GIST患者,对患者进行甲磺酸伊马替尼治疗后B7H6水平下降,提示血浆B7H6水平反映肿瘤负荷。Ponath等人研究表明从细胞上清液中分离出的可溶性B7H6可显著降低NK细胞的细胞毒作用 [9]。此外,Silvia等发现高浓度的sB7H6可降低NK细胞表面NKp30的表达,从而抑制卵巢癌患者腹水中NK细胞的细胞毒作用 [10]。慢性受体–配体相互作用可能导致肿瘤微环境中NK细胞上NKp30表达的丧失,从而导致NK细胞介导的卵巢癌细胞清除不良。IL-10和TNFα发挥着不同的作用,前者抑制NK细胞的激活,而后者促进NK细胞的触发。与表达B7H6的神经母细胞瘤细胞系共培养时,NKp30C驱动IL-10释放,NKp30A或NKp30B驱动的TNFα、IFNγ产生。通过诱导IFNγ,NKp30A和NKp30B可能限制NKp30对其配体的持续暴露,并防止NKp30耗尽,相反,表达NKp30C的NK细胞产生的IL-10促进了NB细胞的B7H6转录,从而允许肿瘤细胞下调NKp30的表达,并调节免疫抑制环境。在这个恶性循环中,最终导致NKp30下调和肿瘤逃逸 [11]。

NK细胞直接或间接清除表达B7H6的肿瘤细胞,这就是B7H6在肿瘤诱导的先天免疫中的作用。然而,肿瘤细胞已经进化出逃避免疫清除的机制,其中一种机制是阻碍NK介导的识别或下调NK细胞功能。肿瘤细胞通过高浓度的sB7H6从而降低NKp30的表达来损害NK细胞功能这些结果表明,提高的肿瘤细胞膜表面B7H6的表达参与调节局部免疫状态可能有助于NK细胞的抗肿瘤免疫作用。

4. B7H6的预后标志物作用

之前的几项研究表明,B7H6的高表达与肿瘤进展有关。B7H6低表达亚组的总生存率(overall survival, OS)明显优于B7H6高表达亚组,提示B7H6的表达量与乳腺癌、宫颈癌和胶质瘤的OS率呈负相关 [12] [13] [14]。同样的,B7H6的表达与胰腺癌患者不良预后密切相关,B7H6表达阳性患者的生存期明显短于B7H6表达阴性患者(P = 0.017),高B7H6组的生存时间明显短于低B7H6组(P < 0.0001)。并且血液中sB7H6水平高的患者总生存期明显短于sB7H6水平低的患者(P < 0.0001),血清中sB7H6水平与分化程度较低(P = 0.0378)和TNM分期较晚(P < 0.001)显著相关 [15]。有趣的是,Qiu [16] 的研究表明,B7H6的高表达与肝细胞癌(hepatocellular carcinoma, HCC)患者更高的OS显著相关,而这一结果与Chen [17] 及其同事之前的报告不同。根据TCGA数据,B7H6在mRNA水平的高表达与HCC患者较短的总生存期相关 [17]。经过分析发现结果不同可能有几个原因:首先,不同类型和阶段的肿瘤可能呈现出不同的肿瘤进展和预后;其次,转录水平和蛋白质水平之间的表达量并不总是相同的,如可溶性B7H6,它也是转录的蛋白质产物 [16]。但情况并非总是如此,Li等人利用数据库的数据揭示了B7H6的高表达与胃癌患者良好的总体生存率相关 [18]。此外,免疫检查点蛋白B7H6在小细胞肺癌中的表达比PD-L1更丰富,而且B7H6蛋白高表达与更长的无进展生存期和增加的总免疫浸润(CD45+)相关 [19] [20]。总之,B7H6在不同肿瘤中具有不同功能,因此有必要进一步研究进而了解B7H6在肿瘤进展中的作用和潜在机制。

5. B7H6调控生物学行为

近期有研究报道,通过下调B7H6的表达,253JBV细胞、MDA-MB-231细胞、U251细胞和Jurkat细胞的增殖、侵袭和迁移能力受到显着抑制,诱导细胞周期停滞G1期,并且可以加速膀胱癌细胞、三阴性乳腺癌细胞、胶质瘤细胞和T淋巴细胞淋巴瘤细胞的凋亡 [21] [22] [23] [24]。值得注意的是,Banu [25] 观察到在宫颈癌细胞系中添加sNKp30可降低肿瘤细胞增殖和迁移率,但对细胞凋亡没有影响。此外,下调B7H6不影响胰腺癌细胞系的增殖、凋亡和迁移。相反,它增强了NK介导的细胞溶解和细胞因子的释放 [15]。Sheffer等人发现从结肠腺癌表面敲除B7H6可降低原代NK细胞的细胞毒作用 [26]。

在淋巴瘤、前列腺癌的不同来源和原发肿瘤组织的肿瘤细胞系中,c-Myc mRNA水平与B7H6表达呈正相关 [27]。报告显示,药物或基因干预(c-Myc或N-Myc)显着下调白血病细胞系中B7H6的表达 [28]。最近的研究报告表明,内质网应激上调B7H6 mRNA水平和表面表达,奈非那韦和洛匹那韦在其药理学相关浓度下也可持续地激发B7H6表达 [29]。总而言之,B7H6通过抑制肿瘤细胞凋亡和促进各种癌症的增殖和转移来促进肿瘤发生,并且表达量可调控,提示可针对该靶点调控表达进而减缓癌症的进展。

6. B7H6参与的信号通路

B7H6在肿瘤发生发展中的潜在机制也激起一些学者的探索欲望。有研究表明,B7H6通过诱导MMP-9表达和STAT3激活来促进HCC转移。B7H6和STAT3在增强HCC细胞中MMP-9启动子活性方面发挥功能重叠作用 [30]。含溴结构域蛋白4 (Bromodomain-containing protein 4, BRD4)是表观遗传分子BET家族中最知名的成员,在急性髓性白血病(Acute Myelocytic Leukemia, AML)细胞中过表达,并调节参与AML发病机制的基因的转录。BRD4维持致瘤分子B7H6在AML中的表达。CBP30/P300介导的组蛋白乙酰化促进了BRD4与B7-H6启动子的结合,该启动子激活了B7-H6转录。二甲双胍的代谢调节可以改变B7H6启动子的乙酰化模式,削弱了BRD4的结合,从而抑制了B7-H6的表达。BET抑制剂、CBP/P300 HAT抑制剂和二甲双胍破坏转录复合物的组装,阻止B7H6转录及其在AML细胞表面的表达 [31]。在功能上,siRNA对胶质瘤干细胞中B7H6的敲低抑制了细胞增殖,癌基因MYC的表达降低以及PI3K/AKT和ERK/MAPK信号通路的失活。此外,Chen等人发现RNMT表达被胶质瘤干细胞中B7H6表达的敲低抑制,表明RNMT参与B7H6/c-Myc轴 [32]。B7H6对非霍奇金淋巴瘤(Non-Hodgkin Lymphoma, NHL)的影响通过B7H6过表达和通路抑制剂测定得到验证。Yang等人通过定量磷酸化蛋白质组学分析发现Ras和HIF-1信号通路受B7H6显着影响。通过蛋白质印迹分析证实,Ras/MEK/ERK通路在B7H6敲低后受到显着抑制。并且他们发现MEK抑制剂AZD8330能够充分抑制Ras/MEK/ERK通路,部分逆转B7H6诱导的细胞增殖和完全逆转细胞迁移和侵袭 [33]。目前B7H6的表达调控表明它通过多种通路参与肿瘤的发生,针对通路相关靶点应用抑制剂或许有助于控制疾病进展。

7. B7H6在免疫治疗中的作用

癌症免疫治疗已经成为最有前途的研究领域。目前的免疫治疗策略主要包括嵌合抗原受体(chimeric antigen receptor, CAR) T细胞疗法、双特异性T细胞接合剂(bispecific T cell engagers, BiTE)、双特异性抗体(bispecific antibodies, Bi-Abs)、免疫检查点阻断方法和癌症疫苗等。

嵌合抗原受体T细胞疗法已成为几种有望在临床上有效治疗癌症的新兴免疫疗法之一。CAR-T细胞疗法通过对患者的T细胞进行基因修饰以表达识别肿瘤抗原的工程CAR,从而增加肿瘤反应性T细胞的性能 [34]。Butler观察到NKp30及其变体的Fc融合蛋白形式能够更好地结合表达低水平B7H6优于TZ47,并且相对于NKp30,新变体通常可以表现出更好的体外肿瘤细胞杀伤力 [34]。

T-bet是一种转录因子,在CD4+T细胞中作为主要调控因子诱导Th1表型。在这项研究中,Gacerez等人发现过表达T-bet的B7H6CAR-T细胞产生更多细胞因子诱导Th1表型,提高了CAR-T细胞的功能活性,同时提高了对表达B7H6的肿瘤细胞的细胞毒性 [35]。在体内,将B7H6特异性的CAR与不同变体的T-bet结合后,共表达B7H6特异性CAR和T-bet的CD4+T细胞改善了携带RMA-B7H6的淋巴瘤的小鼠的存活率,提高了CAR-T细胞治疗的功效 [35]。此外,黑色素瘤在内质网应激和综合应激反应条件下对B7H6特异性的CAR-T细胞敏感性更高 [29]。重要的是,这些基于人类单链抗体可变区基因片段的CAR对B7H6表达的变化很敏感,微调天然可以产生更理想的信号输出,这可能会为未来的临床开发提供基础 [36]。

双特异性抗体可以与两个不同抗原相结合,可以在NK细胞上的活化受体和肿瘤细胞上的肿瘤相关抗原之间形成链接。此外,sun等人将抗B7H6单克隆抗体(monoclonal antibody, mAb)与临床批准的抗CD3 mAb抗体的化学偶联,用抗CD3和抗B7H6双抗体引导T细胞杀死血液肿瘤细胞取得了较大进展。配备B7H6 Bi-Ab的T细胞显著增加了穿孔素和颗粒酶B以及T细胞衍生的细胞因子TNF-α、IFN-γ和IL-2的分泌,增强特异性杀伤肿瘤细胞的能力 [37]。MYC是影响10%至15%基因表达的最主要的转录因子之一,通常在B细胞和前列腺癌细胞以及其他细胞中高度上调。B7H6通常在MYC过表达的B细胞、淋巴瘤细胞和前列腺细胞细胞系中上调。Chen等 [27] 制备B7H6高亲和力重组抗体与过表达MYC的细胞的结合增加,并表明这些抗体可以通过双特异性T细胞接合选择性地诱导高MYC B细胞、淋巴瘤细胞和前列腺细胞激活T细胞,从而证明对B7H6抗体的进一步临床前研究是合理的。虽然几乎所有标准的肿瘤疗法,包括化学疗法、放射疗法、非致死性热休克和细胞因子疗法,都可以上调肿瘤细胞中B7H6的表达,增强肿瘤对NK细胞溶解的敏感性,但目前尚未有B7H6的免疫治疗应用于临床,未来应致力于将临床前研究应用于临床 [28]。

8. 小结与展望

与B7家族的其他蛋白质相比,B7H6受到的关注要少得多,但有望成为改善癌症免疫治疗的靶点。B7H6在不同人类肿瘤中发挥预后标志物作用。B7H6的表达调控多方面的肿瘤生物学行为。在最近的报道中提到B7H6在不同肿瘤中抗肿瘤作用的证据或促肿瘤作用的证据,以及所涉及的信号通路;以B7H6为靶点的CAR-T、BITE等免疫疗法也在小鼠中开展试验。尽管学者们在探究B7H6在肿瘤生物学中的作用方面取得了进展,但对于驱动B7H6在肿瘤微环境中发挥作用的分子机制知之甚少。并且有必要研究膜B7H6和血清可溶性B7H6的水平与免疫治疗或免疫逃逸的相关性。此外,B7H6/NKp30轴在肿瘤进展中的潜在机制仍有待进一步研究。从而以B7H6为靶点的疗法应用于未来的癌症治疗方案中,为癌症治疗提供新策略。

致谢

由衷感谢陈剑教授的悉心指导。

NOTES

*通讯作者。

参考文献

[1] Pazina, T., Shemesh, A., Brusilovsky, M., Porgador, A. and Campbell, K.S. (2017) Regulation of the Functions of Nat-ural Cytotoxicity Receptors by Interactions with Diverse Ligands and Alterations in Splice Variant Expression. Frontiers in Immunology, 8, Article No. 369.
https://doi.org/10.3389/fimmu.2017.00369
[2] Shimasaki, N., Jain, A. and Campana, D. (2020) NK Cells for Cancer Immunotherapy. Nature Reviews Drug Discovery, 19, 200-218.
https://doi.org/10.1038/s41573-019-0052-1
[3] Souza-Fonseca-Guimaraes, F., Cursons, J. and Huntington, N.D. (2019) The Emergence of Natural Killer Cells as a Major Target in Cancer Immunotherapy. Trends in Immunology, 40, 142-158.
https://doi.org/10.1016/j.it.2018.12.003
[4] Wang, B., Ran, Z., Liu, M. and Ou, Y. (2019) Prognostic Significance of Potential Immune Checkpoint Member HHLA2 in Human Tumors: A Comprehensive Analysis. Fron-tiers in Immunology, 10, Article No.1573.
https://doi.org/10.3389/fimmu.2019.01573
[5] Upadhaya, S., Neftelino, S.T., Hodge, J.P., Oliva, C., Campbell, J.R. and Yu, J.X. (2021) Combinations Take Centre Stage in PD1/PDL1 Inhibitor Clinical Trials. Nature Reviews Drug Discovery, 20, 168-169.
https://doi.org/10.1038/d41573-020-00204-y
[6] Nagai, S. and Azuma, M. (2019) The CD28-B7 Family of Co-Signaling Molecules. In: Azuma, M. and Yagita, H., Eds., Co-Signal Molecules in T Cell Activation, Vol. 1189, Springer, Singapore, 25-51.
https://doi.org/10.1007/978-981-32-9717-3_2
[7] Brandt, C.S., Baratin, M., Yi, E.C., Kennedy, J., Gao, Z., Fox, B., Haldeman, B., Ostrander, C.D., Kaifu, T., Chabannon, C., Moretta, A., West, R., Xu, W., Vivier, E. and Levin, S.D. (2009) The B7 Family Member B7-H6 Is a Tumor Cell Ligand for the Activating Natural Killer Cell Receptor NKp30 in Humans. Journal of Experimental Medicine, 206, 1495-1503.
https://doi.org/10.1084/jem.20090681
[8] Rusakiewicz, S., Perier, A., Semeraro, M., Pitt, J.M., Pogge Von Strandmann, E., Reiners, K.S., Aspeslagh, S., Pipéroglou, C., Vély, F., Ivagnes, A., Jegou, S., Halama, N., Chaigneau, L., Validire, P., Christidis, C., Perniceni, T., Landi, B., Berger, A., Isambert, N., Domont, J., Bonvalot, S., Terrier, P., Adam, J., Coindre, J.M., Emile, J.F., Poirier-Colame, V., Chaba, K., Rocha, B., Caignard, A., Toubert, A., Enot, D., Koch, J., Marabelle, A., Lambert, M., Caillat-Zucman, S., Leyvraz, S., Auclair, C., Vivier, E., Eggermont, A., Borg, C., Blay, J.Y., Le Cesne, A., Mir, O. and Zitvogel, L. (2017) NKp30 Isoforms and NKp30 Ligands Are Predictive Bi-omarkers of Response to Imatinib Mesylate in Metastatic GIST Patients. OncoImmunology, 6, Article ID: e1137418.
https://doi.org/10.1080/2162402X.2015.1137418
[9] Ponath, V., Hoffmann, N., Bergmann, L., Mäder, C., Alashkar Alhamwe, B., Preußer, C. and Pogge Von Strandmann, E. (2021) Secreted Ligands of the NK Cell Receptor NKp30: B7-H6 Is in Contrast to BAG6 Only Marginally Released via Extracellular Vesicles. International Journal of Molecular Sciences, 22, Article No. 2189.
https://doi.org/10.3390/ijms22042189
[10] Pesce, S., Tabellini, G., Cantoni, C., Patrizi, O., Coltrini, D., Rampinelli, F., Matta, J., Vivier, E., Moretta, A., Parolini, S. and Marcenaro, E. (2015) B7-H6-Mediated Downregulation of NKp30 in NK cells Contributes to Ovarian Carcinoma Immune Escape. OncoImmunology, 4, Article ID: e1001224.
https://doi.org/10.1080/2162402X.2014.1001224
[11] Semeraro, M., Rusakiewicz, S., Minard-Colin, V., Delahaye, N.F., Enot, D., Vély, F., Marabelle, A., Papoular, B., Piperoglou, C., Ponzoni, M., Perri, P., Tchirkov, A., Matta, J., Lapierre, V., Shekarian, T., Valsesia-Wittmann, S., Commo, F., Prada, N., Poirier-Colame, V., Bressac, B., Cotteret, S., Brugieres, L., Farace, F., Chaput, N., Kroemer, G., Valteau-Couanet, D. and Zitvogel, L. (2015) Clinical Impact of the NKp30/B7-H6 Axis in High-Risk Neuroblastoma Patients. Science Translational Medicine, 7, Article No. 283ra55.
https://doi.org/10.1126/scitranslmed.aaa2327
[12] Cherif, B., Triki, H., Charfi, S., Bouzidi, L., Kridis, W.B., Khan-fir, A., Chaabane, K., Sellami-Boudawara, T. and Rebai, A. (2021) Immune Checkpoint Molecules B7-H6 and PD-L1 Co-Pattern the Tumor Inflammatory Microenvironment in Human Breast Cancer. Scientific Reports, 11, Article No. 7550.
https://doi.org/10.1038/s41598-021-87216-9
[13] Gutierrez-Silerio, G.Y., Franco-Topete, R.A., Haramati, J., Na-varrete-Medina, E.M., Gutierrez-Franco, J., Bueno-Topete, M.R., Bastidas-Ramirez, B.E., Ramos-Marquez, M.E. and Del Toro-Arreola, S. (2020) Positive Staining of the Immunoligand B7-H6 in Abnormal/Transformed Keratinocytes Consistently Accompanies the Progression of Cervical Cancer. BMC Immunology, 21, Article No. 9.
https://doi.org/10.1186/s12865-020-0341-9
[14] Jiang, T., Wu, W., Zhang, H., Zhang, X., Zhang, D., Wang, Q., Huang, L., Wang, Y. and Hang, C. (2017) High Expression of B7-H6 in Human Glioma Tissues Promotes Tumor Pro-gression. Oncotarget, 8, 37435-37447.
https://doi.org/10.18632/oncotarget.16391
[15] Zhu, Z., Teng, K.Y., Zhou, J., Xu, Y., Zhang, L., Zhao, H., Zhang, X., Tian, L., Li, Z., Lu, T., Ma, S., Li, Z., Dai, Z., Wang, J., Chen, X., Wu, X., Pan, Y., Shi, W., You, Z., Chen, H., Chung, V., Yu, J., He, S., Zhao, X., Cao, L. and Li, D. (2022) B7H6 Serves as a Negative Prognostic Marker and an Immune Modulator in Human Pancreatic Cancer. Frontiers in Oncology, 12, Article ID: 814312.
https://doi.org/10.3389/fonc.2022.814312
[16] Qiu, H., Gao, S., Sun, Z. and Wang, J. (2021) Dual Role of B7-H6 as a Novel Prognostic Marker in Hepatocellular Carcinoma. APMIS, 129, 105-117.
https://doi.org/10.1111/apm.13099
[17] Chen, L., Feng, J., Xu, B., Zhou, Y., Zheng, X., Wu, C. and Jiang, J. (2018) B7-H6 Expression in Human Hepatocellular Carcinoma and Its Clinical Significance. Cancer Cell International, 18, Article No. 126.
https://doi.org/10.1186/s12935-018-0627-7
[18] Li, D., Xiang, S., Shen, J., Xiao, M., Zhao, Y., Wu, X., Du, F., Ji, H., Li, M., Zhao, Q., Kaboli, P.J., Yang, X., Xiao, Z., Qin, B. and Wen, Q. (2020) Comprehensive Understanding of B7 Family in Gastric Cancer: Expression Profile, Association with Clinicopathological Parameters and Downstream Targets. International Journal of Biological Sciences, 16, 568-582.
https://doi.org/10.7150/ijbs.39769
[19] Thomas, P.L., Groves, S.M., Zhang, Y.K., Li, J., Gonzalez-Ericsson, P., Sivagnanam, S., Betts, C.B., Chen, H.C., Liu, Q., Lowe, C., Chen, H., Boyd, K.L., Kopparapu, P.R., Yan, Y., Coussens, L.M., Quaranta, V., Tyson, D.R., Iams, W. and Lovly, C.M. (2021) Beyond PD-L1: B7-H6 Emerges as a Potential Immunotherapy Target in Small Cell Lung Cancer. Journal of Thoracic Oncology, 26, 1211-1223.
https://doi.org/10.1016/j.jtho.2021.03.011
[20] Zhang, X., Xie, W., Wang, Z., Song, S., Qin, Y., Zhang, F., Chen, F. and Cai, L. (2020) Expression of a Novel Immune Checkpoint B7-H6 Ligand in Human Small Cell Lung Cancer. Annals of Translational Medicine, 8, Article No. 589.
https://doi.org/10.21037/atm-20-2548
[21] Zhao, L., Lian, T., Li, J., Wei, S., Li, H., Li, C. and Wang, H. (2021) NCR3LG1 (B7-H6) Is a Potential Prognostic Factor for Bladder Cancer Patients. Biomarkers, 26, 260-267.
https://doi.org/10.1080/1354750X.2021.1883110
[22] Zhang, B., Sun, J., Yao, X., Li, J., Tu, Y., Yao, F. and Sun, S. (2018) Knockdown of B7H6 Inhibits Tumor Progression in Triple-Negative Breast Cancer. Oncology Letters, 16, 91-96.
https://doi.org/10.3892/ol.2018.8689
[23] Che, F., Xie, X., Wang, L., Su, Q., Jia, F., Ye, Y., Zang, L., Wang, J., Li, H., Quan, Y., You, C., Yin, J., Wang, Z., Li, G., Du, Y. and Wang, L. (2018) B7-H6 Expression Is In-duced by Lipopolysaccharide and Facilitates Cancer Invasion and Metastasis in Human Gliomas. International Im-munopharmacology, 59, 318-327.
https://doi.org/10.1016/j.intimp.2018.03.020
[24] Yuan, L., Sun, L., Yang, S., Chen, X., Wang, J., Jing, H., Zhao, Y. and Ke, X. (2021) B7-H6 Is a New Potential Biomarker and Therapeutic Target of T-Lymphoblastic Lymphoma. An-nals of Translational Medicine, 9, Article No. 328.
https://doi.org/10.21037/atm-20-5308
[25] Banu, N., Riera-Leal, A., Haramati, J., Ortiz-Lazareno, P.C., Panikar, S.S., Bastidas-Ramirez, B.E., Gutierrez-Silerio, G.Y., Solorzano-Ibarra, F., Tellez-Ba?Uelos, M.C., Gutierrez-Franco, J., Bueno-Topete, M.R., Pereira-Suarez, A.L. and Del Toro-Arreola, S. (2020) B7-H6, an Immunoligand for the Natural Killer Cell Activating Receptor NKp30, Reveals Inhibitory Effects on Cell Proliferation and Migration, but Not Apoptosis, in Cervical Cancer Derived-Cell lines. BMC Cancer, 20, Article No.1083.
https://doi.org/10.1186/s12885-020-07608-4
[26] Sheffer, M., Lowry, E., Beelen, N., Borah, M., Amara, S.N., Mader, C.C., Roth, J.A., Tsherniak, A., Freeman, S.S., Dashevsky, O., Gandolfi, S., Bender, S., Bryan, J.G., Zhu, C., Wang, L., Tariq, I., Kamath, G.M., Simoes, R.M., Dhimolea, E., Yu, C., Hu, Y., Dufva, O., Giannakis, M., Syrgkanis, V., Fraenkel, E., Golub, T., Romee, R., Mustjoki, S., Culhane, A.C., Wieten, L. and Mitsiades, C.S. (2021) Ge-nome-Scale Screens Identify Factors Regulating Tumor Cell Responses to Natural Killer Cells. Nature Genetics, 53, 1196-1206.
https://doi.org/10.1038/s41588-021-00889-w
[27] Chen, W., Mou, K.Y., Solomon, P., Aggarwal, R., Leung, K.K. and Wells, J.A. (2021) Large Remodeling of the Myc- Induced Cell Surface Proteome in B Cells and Pros-tate Cells Creates New Opportunities for Immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 118, Article ID: e2018861118.
https://doi.org/10.1073/pnas.2018861118
[28] Cao, G., Cheng, Y., Zheng, X., Wei, H., Tian, Z., Sun, R. and Sun, H. (2021) All-Trans Retinoic Acid Induces Leukemia Resistance to NK Cell Cytotoxicity by Down-Regulating B7-H6 Expression via c-Myc Signaling. Cancer Communications, 41, 51-61.
https://doi.org/10.1002/cac2.12121
[29] Obiedat, A., Charpak-Amikam, Y., Tai-Schmiedel, J., Seidel, E., Ma-hameed, M., Avril, T., Stern-Ginossar, N., Springuel, L., Bolsée, J, Gilham, D.E., Dipta, P., Shmuel, M., Chevet, E., Mandelboim, O. and Tirosh, B. (2020) The Integrated Stress Response Promotes B7H6 Expression. Journal of Molecu-lar Medicine, 98, 135-148.
https://doi.org/10.1007/s00109-019-01859-w
[30] Li, Y.-M., Liu, Z.-Y., Li, Z.-C., Wang, J.-C., Yu, J.-M., Yang, H.-J., Chen, Z.-N. and Tang, J. (2019) Alterations of the Immunologic Co-Stimulator B7 and TNFR Families Correlate with Hepatocellular Carcinoma Prognosis and Metastasis by Inactivating STAT3. International Journal of Molecular Sciences, 20, Article No. 156.
https://doi.org/10.3390/ijms20010156
[31] Baragano Raneros, A., Rodriguez, R.M., Bernardo Florez, A., Palomo, P., Colado, E., Minguela, A., Suarez Alvarez, B. and Lopez-Larrea, C. (2021) Bromodomain Protein BRD4 Is an Epige-netic Activator of B7-H6 Expression in Acute Myeloid Leukemia. OncoImmunology, 10, Article ID: 1897294.
https://doi.org/10.1080/2162402X.2021.1897294
[32] Chen, H., Guo, Y., Sun, J., Dong, J., Bao, Q., Zhang, X. and Fu, F. (2020) Preferential Expression of B7-H6 in Glioma Stem-Like Cells Enhances Tumor Cell Proliferation via the c-Myc/RNMT Axis. Journal of Immunology Research, 2020, Article ID: 2328675.
https://doi.org/10.1155/2020/2328675
[33] Yang, S., Yuan, L., Wang, Y., Zhu, M., Wang, J. and Ke, X. (2020) B7-H6 Promotes Cell Proliferation, Migration and Invasion of Non-Hodgkin Lymphoma via Ras/MEK/ERK Pathway Based on Quantitative Phosphoproteomics Data. OncoTargets and Therapy, 13, 5795-5805.
https://doi.org/10.2147/OTT.S257512
[34] Butler, S.E., Brog, R.A., Chang, C.H., Sentman, C.L., Huang, Y.H. and Ackerman, M.E. (2021) Engineering a Natural Ligand-Based CAR: Directed Evolution of the Stress-Receptor NKp30. Cancer Immunology, Immunotherapy, 71, 165-176.
https://doi.org/10.1007/s00262-021-02971-y
[35] Gacerez, A.T. and Sentman, C.L. (2018) T-Bet Promotes Potent Antitumor Activity of CD4+ CAR T Cells. Cancer Gene Therapy, 25, 117-128.
https://doi.org/10.1038/s41417-018-0012-7
[36] Gacerez, A.T., Hua, C.K., Ackerman, M.E. and Sentman, C.L. (2018) Chimeric Antigen Receptors with Human scFvs Preferentially Induce T Cell Anti-Tumor Activity against Tumors with High B7H6 Expression. Cancer Immunology, Immunotherapy, 67, 749-759.
https://doi.org/10.1007/s00262-018-2124-1
[37] Sun, X., Zhao, J., Ma, L., Sun, X., Ge, J., Yu, Y., Ma, J. and Zhang, M. (2021) B7-H6 as an Efficient Target for T Cell-Induced Cytotoxicity in Haematologic Malignant Cells. Inves-tigational New Drugs, 39, 24-33.
https://doi.org/10.1007/s10637-020-00976-5