不同生境烟粉虱体内共生菌的检测及其对寄主生物学特性的影响
Detection of Endosymbionts in Different Bemsia tabaci Populations and Their Effects on Whitefly Host
DOI: 10.12677/hjas.2012.21002, PDF, HTML, XML, 下载: 3,232  浏览: 11,302  国家自然科学基金支持
作者: 薛夏, 李绍建, 陈驹坚, 任顺祥, 邱宝利*:华南农业大学资源环境学院昆虫学系
关键词: 薛 夏李绍建陈驹坚任顺祥邱宝利
Xia Xue
Shaojian Li Jujian Chen Shunxiang Ren Baoli Qiu
摘要: 烟粉虱Bemisia tabaci是一种世界性分布的农业害虫。本文利用PCR扩增和DNA测序技术,研究了野生和实验室饲养的烟粉虱B型和Q型种群内共生菌的感染情况;并利用利福平对Q型烟粉虱实验室种群体内的共生菌进行了灭活处理,就处理前后烟粉虱的生物学特性变化进行比较。研究结果表明,所检测的的烟粉虱种群中均有初生共生菌Candidatus Portiera aleyrodidarum的感染,而次生共生菌Wolbachia和杀雄菌Arsenophonus在不同生境下的烟粉虱种群内,其感染率存在较大差异。利用1.0 mg/ml的利福平对饲养型的Q型烟粉虱成虫进行处理,48 h后处理样本体内Wolbachia的感染检测为阴性,而初生共生菌Candidatus和杀雄菌Arsenophonus仍为阳性。共生菌灭活处理后,烟粉虱成虫单雌产卵量明显下降,由36.9粒/头下降至26.4粒/头;F1代的发育历期延长,F1代种群中雄性比例有较大幅度增加,由对照种群中的45.28%上升至58.06%。本文研究表明,不同生境下,烟粉虱体内的共生菌类群存在差异,次生共生菌Wolbachia对烟粉虱的发育、繁殖及种群性比等方面有着明显的影响。
Abstract: The sweetpotato whitefly Bemisia tabaci (Gennadius) is a globally distributed agricultural pest. The species and infection rates of different endosymbionts in field and laboratory populations of B. tabaci B and Q biotyes were detected by molecular methods. Meawhile, the endosymbionts in B. tabaci Q biotype lab population were inactivated with rifampicin, and then the biology of Wolbachia positive and negative popula-tions of B. tabaci Q biotype were compared. Rusults indicated that all the populations of B. tabaci were in-fected by the primary endosymbiont Candidatus Portiera aleyrodidarum, regardless biotype or population habitat of field or lab, while the infection of secondary endosymbionts Wolbachia and Arsenophonus were marked different in various B. tabaci populations related to biotype and habitat. Inactivated with 1.0mg/ml rifampicin for 48 h, the infection of Wolbachia in B. tabaci Q biotype was completely eliminated, but no ob-vious effect on the Candidatus and Arsenophonu in all the whitefly popualtions. Treated by rifampicin, the fecundity of female adults reduced and the developmental time of F1 offspring extended. Results also showed that the elimination of Wolbachia in B. tabaci led to the increase of male progeny proportion. In general, our current study showed that endosymbionts varied in different B. tabaci populations from various habitats and Wolbachia has significant effects on the biology of its whitefly hosts.
文章引用:薛夏, 李绍建, 陈驹坚, 任顺祥, 邱宝利. 不同生境烟粉虱体内共生菌的检测及其对寄主生物学特性的影响[J]. 农业科学, 2012, 2(1): 5-12. http://dx.doi.org/10.12677/hjas.2012.21002

参考文献

[1] S. L. O’Neill, R. Giordano, A. Colbert, et al. 16S rRNA phylogenetic analysis of the bacterial endosymbiontsassociated with cytoplasmic incompatibility in insects. PNAS, 1992, 89(7): 2699-2702.
[2] J. H. Werren, W. Zhang and L. R. Guo. Evolution and phylogeny of Wolbachia: Reproductive parasites of arthropod. Proceedings of Biology Science, 1995, 261(1360): 55-63.
[3] A. Nirgianaki, G. K. Banks and S. R. Rrohlich. Wolbachia infections of the whitefly Bemisia tabaci. Current Microbiology, 2003, 47(2): 93-101.
[4] P. Buchner. Endosymbiosis of animals with plant microorganisms. New York: International Science, 1965.
[5] L. Akman, A.Yamashita, H. Watanabe, et al. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Natural Genetic. 2002, 32: 402-407.
[6] D. Wu, S. C. Daugherty, S. E. van Aken, et al. Metabolic complementarity and genomics of the dual bacterial symbiosis of sharpshooters. PLoS Biology, 2006, 4(6): 188.
[7] S. Aksoy. Control of tsetse flies and trypanosomes using molecular genetics. Veterinary Parasitology, 2003, 115(2): 125-145.
[8] P. Baumann. Biogogy of bacterriocyter-associated endosymbionts of plants sap-sucking insects. Annual Review of Microbiology, 2005, 59: 155-189.
[9] O. Duron, D. Bouchon, S. Boutin, et al. The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biology, 2008, 6: 27.
[10] A. E. Douglas. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annual Review of Entomology, 1998, 43(1): 17-37.
[11] S. Siozios, P. Sapountzis, P. Ioannidis, et al. Wolbachia symbiosis and insect immune response. Insect Science, 2008, 15: 89-100.
[12] P. J. De Barro. Bemisia tabaci biotype B: A review of its biology, distribution and control. Technical Paper No. 36, 1995.
[13] M. R. V. Oliveira, T. J. Henneberryb and P. Andersonc. History, current status, and collaborative research projects for Bemisia tabaci. Crop Protection, 2001, 20: 709-723.
[14] R. D. Jones. Plant viruses transmitted by whiteflies. European Joural of Plant Pathology, 2003, 109: 195-219.
[15] J. H. Werren. Biology of Wolbachia. Annual Review of Entomology, 1997, 42: 587-609.
[16] 褚栋, 张友军, 毕玉平等. Wolbachia属共生菌及其对节肢动物宿主适合度的影响[J]. 微生物学报, 2005, 45(5): 817-820.
[17] E. Zchori-Fein, J. K. Brown. Diversity of prokaryotes associated with Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Annal Entomology Society of America, 2002, 95(6): 711-718.
[18] M. L. Thao, P. Baumann. Evolutionary relationships of primary prokaryotic endosymbionts of Whiteflies and their hosts. Apply Environmental Microbiology, 2004, 70(6): 3401-3406.
[19] J. W. S. Domingo, M. G. K. Aufman, M. J. Klug, et al. Characterization of the cricket hindgut microbiota with fluorescently labelled rRNA2 targeted oligonucleotide probes. Apply Environmental Microbiology, 1998, 64(2): 752.
[20] A. E. Douglas, A. C. Darby, L. M. Birkle, et al. The ecological significance of symbiotic microorganisms in animal sperspectives from the microbita of aphids. In: R. M. Hails, J. Beringer, H. C. J. Godfray, Eds., General environment. Oxford: Blackwell Publishing, 2002: 306-3251.
[21] C. B. Montllor, A. Maxmen and A. H. Purcell. Facultative bacterial endosymbionts benefit pea aphid bacterial symbionts Acyrthosiphon pisum under heat stress. Ecological Entomology, 2002, 27(2): 189-195.
[22] A. C. Darby, C. R. Tosh, K. F. A. Walters, et al. The significance of a facultative bacterium to natural populations of the pea aphid Acyrthosiphon pisum. Ecological Entomology, 2003, 28: 145- 1501.
[23] K. M. Oliver, J. Campos, N. A. Moran, et al. Population dynamics of defensive symbionts in aphids. Proceeding of Royal Society of London, Series B. Biological Sciences, 2008, 275: 293-299.
[24] A. Vincent, A. Jansen, T. Michael, et al. Stochastic spread of Wolbachia. Proceedings of Royal Society of London, Series B. Biological Sciences, 2008, 275(1652): 2769-2776.
[25] R. Koga, T. Tsuchida and T. Fukatsu. Changing partners in an obligate symbiosis: A facultative endosymbiont can compensate for loss of the essential endosymbiont Buchnera in an aphid. Pro- ceedings of Royal Society of London, Series B. Biological Sciences, 2003, 270(1533): 2543-25501.
[26] L. Hughd. Rapid genetic changes in natural insect populations. Ecological Entomology, 2010, 35: 155-164.