miR-21在非酒精性脂肪肝病中的研究进展
Research Progress of miR-21 in Non-Alcoholic Fatty Liver Disease
DOI: 10.12677/ACM.2022.12121673, PDF, HTML, XML, 下载: 192  浏览: 413  科研立项经费支持
作者: 彭 冉, 郭 巧, 高 韬, 柯大智*:重庆医科大学附属第二医院全科医学科,重庆
关键词: 非酒精性脂肪性肝病微小RNA发病机制早期诊断文献综述Nonalcoholic Fatty Liver Disease miRNA Pathogenesis Early Diagnosis Review
摘要: 非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是最常见的慢性肝病之一,早期症状隐匿,疾病发展后期可严重危害人体健康。微小RNA (miRNA)是一种由少量核苷酸组成的非编码RNA,在多种生物过程中发挥重要作用。微小RNA-21 (miR-21)与NAFLD的发生发展有着紧密联系。目前,NAFLD的发病机制尚不清楚,临床上缺乏特异性的早期诊断方法。本文就miR-21在NAFLD发生发展中的作用机制进行综述,并探讨其在NAFLD早期诊断中的价值。
Abstract: Non-alcoholic Fatty Liver Disease (NAFLD) is one of the most common chronic liver diseases in the world. The early symptoms are occult and the later stages of disease development can seriously harm human health. At present, the specific pathogenesis of NAFLD is not clear, and there is a lack of specific clinical early diagnosis methods. MicroRNAs (miRNAs) are non-coding RNAs composed of a small number of nucleotides that play an important role in a variety of biological processes. Pre-vious studies have shown that MicroRNA-21 (miR-21) is closely related to the occurrence and de-velopment of NAFLD. This paper reviews the mechanism of miR-21 in the occurrence and develop-ment of NAFLD, and discusses its value in the early diagnosis of NAFLD.
文章引用:彭冉, 郭巧, 高韬, 柯大智. miR-21在非酒精性脂肪肝病中的研究进展[J]. 临床医学进展, 2022, 12(12): 11611-11617. https://doi.org/10.12677/ACM.2022.12121673

1. 引言

非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)是指由非病毒、非遗传和非酒精因素引起肝脂肪变性的一组疾病,其疾病谱包括非酒精性单纯性脂肪肝(nonalcoholic simple fatty liver, NAFL)、非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)、肝脏纤维化、相关肝硬化和肝细胞癌(hepatocellular carcinoma, HCC)。NAFLD与糖尿病、肥胖、高脂血症和高血压等代谢紊乱密切相关 [1]。在西方国家,NAFLD已经超过病毒性肝炎,成为慢性肝病的首位发病原因;而在亚洲地区,非酒精性脂肪肝的发病率也有所增加 [2]。

NAFLD的发病机制复杂,目前尚未完全阐明,且其早期症状隐匿,多数患者于健康体检时偶然发现。当NAFLD患者出现明显症状时,疾病大多已进展至后期阶段,治疗代价大大增加。目前NAFLD的诊断金标准为肝脏活检,而无创的影像学诊断方法包括超声、核磁共振等在临床应用过程中均存在一定局限性。因此,探索NAFLD的发病机制,寻找新的NAFLD早期诊断指标有着重要意义。

由于通过外周血清标志物检测具有创伤小、操作简单、可重复性强等优点,对于外周血清学标志物的研究,尤其是对于细胞外游离微RNA (microRNA, miRNA)在NAFLD中作用机制的研究成为大家所关注的热点。其中,miR-21已被证实与NAFLD的发生发展有着密切联系。故本文旨在就miR-21对NAFLD发生与发展中的作用机制进行综述,以探讨miR-21在NAFLD的早期诊断的潜在价值。

2. miR-21的结构与功能

miRNA最早于1993年在秀丽隐杆线虫中被发现 [3],是一种由约22个核苷酸组成的非编码RNA,通过信使RNA在转录后水平调节基因表达,在肢体发育、细胞分化和细胞炎症反应等多种生物过程中发挥重要作用 [4] [5] [6]。miRNA可以通过与蛋白质复合物结合,由凋亡小体将其整合到脂蛋白复合物中,或与膜蛋白相互作用形成微泡,从外泌体中的细胞中分泌出来,游离的miRNA通过从细胞中自然渗漏或作为坏死细胞的产物进入循环 [7]。由于膜囊泡和蛋白质/脂蛋白复合物的存在,miRNA可以在血液中避开细胞外RNA酶的作用,在外周体液环境中稳定存在,是一种相对容易获得的生物标志物。

miR-21是第一个在人类染色体中发现的miRNA [8],其编码基因位于编码跨膜蛋白49的内含子基因TMEM49区域内的染色体17q23.2上 [9]。已有研究表明,miR-21广泛表达于包括肝脏在内的各种人体组织中 [10]。Loyer等发现,与健康对照组相比,miR-21在NASH患者的肝脏中表达上调 [11];Zhang等认为由miR-21介导的miR-21/PDCD4/AP-1自调节反馈环是肝纤维化进展的主要驱动力 [12];亦有研究发现miR-21在包括肝细胞癌在内的多种恶性肿瘤中表达升高 [13] [14] [15]。越来越多的证据表明,miR-21在NAFLD的发生发展中发挥着一定作用。

3. miR-21与NAFLD的关系

3.1. miR-21与肝细胞脂肪化

肝脏中脂肪的过度积累是NAFLD的早期特征。既往研究表明,固醇调节元件结合蛋白(Sterol Regulatory Element-Binding Proteins, SREBPs)的持续激活以及过氧化物酶体增殖物激活受体(Peroxisome Proliferator-Activated Receptors, PPARs)的表达降低均可刺激线粒体脂肪酸的氧化,从而促进NAFLD的疾病进展 [16]。在机制上,HMG盒转录因子1 (HMG-box transcription factor 1, HBP1)是miR-21的直接作用靶点,它可激活p53的转录从而抑制固醇调节元件结合蛋白-1C (Sterol Regulatory Element-Binding Protein-1C, SREBP1C)的表达,进而抑制脂质的生成;miR-21正是通过抑制HBP1的表达,反向调节HBP1-p53-Srebp1c通路,在一定程度上促进肝脂质积累 [17]。Calo等通过动物实验发现,肝细胞miR-21在正常生理条件下保持非活跃状态,当通过高脂饲料喂养造成代谢压力时,miR21被激活,促进肝脏脂肪变性和胰岛素抵抗的发展,并阻碍糖异生。敲除miR-21可诱导p53转录,调节细胞周期转变的基因表达,从而降低脂肪生成。该团队在进一步的研究中发现,肝细胞中的miR-21可通过调节叉头盒蛋白O1 (Forkhead box, Foxo1)、胰岛素诱导基因2 (Insulin Induced Gene 2, Insig2)、信号转导及转录激活子3 (Signal Transduction and Activator of Transcription 3, STAT3)和肝细胞核因子4-α (Hepatocyte nuclear factor 4α, HNF4-α)来对特定因素的mRNA产生抑制作用 [18]。此种作用或可预防致肥性饮食小鼠的葡萄糖耐受不良和脂肪变。国内学者在小鼠实验中发现在NAFLD的肝组织中miR-21对PPAR-γ基因表达也有调节作用 [19]。Zhang等在患有NASH的小鼠和人类中同样发现PPARγ的水平与miR-21的水平负相关,在进一步研究中,该团队证实PPARγ作为一种转录因子,可通过抑制miR-21-5p基因启动子的转录活性,进而增强SFRP5基因的表达,从而抑制肝脏脂肪积聚、肝脏炎症和氧化应激 [20]。

3.2. miR-21与肝纤维化

肝纤维化是肝脏的一种慢性损伤过程,其特征在于肝星状细胞(Hepatic stellate cells, HSC)的活化、细胞外基质的过度沉积,肝脏结构以及正常功能被破坏,最终导致肝硬化 [21]。既往文献报道miR-21能促进肌肉和各种器官(包括心脏、肾脏、肺和肝脏)的纤维生成 [22]。在机制上,miR-21促进成纤维细胞的激活和细胞外基质蛋白(即胶原和纤维连接蛋白)的沉积,启动转化生长因子-β1 (transforming growth factor-β1, TGF-β1)/Sma和Mad同源物蛋白(Smad)信号通路,通过与靶细胞的受体结合,刺激包括肝脏在内的不同器官的组织纤维化 [23] [24];经典的TGF-β1/Smad信号通路参与HSC活化的每一步 [25],TGF-β1通过与受体结合形成TβRII-TGF-β1-tβ异寡聚物,启动细胞内信号转导。活化的TβRI激活下游分子Smad2和Smad3,导致Smad2和Smad3磷酸化。被激活的Smad2和Smad3与Smad4形成寡聚物并转移到细胞核中,并调节促纤维化基因如缔组织生长因子(Connective Tissue Growth Factor, CTGF)、基质金属蛋白酶抑制剂-1 (Tissue Inhibitor of Metalloproteinase-1, TIMP-1)、I型胶原α1 (Collagen type Iα1, COL1A1)和质金属蛋白酶-9 (matrix metalloproteinase-9, MMP-9)的表达 [26] [27] [28]。此外,miR-21还可以通过蛋白酪氨酸磷酸酶(PTEN)/磷酸肌醇-3-激酶(PI3K)/蛋白激酶B(Akt)信号通路 [29]、程序性细胞死亡4 (programmed cell death 4, PDCD4)/转录因子激活蛋白1 (AP-1) [11] 等促进细胞氧化,增加胶原蛋白的生成。

Min等发现在NAFLD小鼠的肝脏组织标本中,盐皮质激素受体(mineralocorticoid receptor, MR)/骨桥蛋白(osteopontin, OPN)/高迁移率族蛋白1 (high-mobility group box-1, HMGB1)轴显著上调,同时促纤维化标志物α-肌动蛋白-2 (actin alpha 2, ACTA2)、TIMP-1、TGF-β1和COL1A1的表达增强。在NAFLD患者的肝组织中也能观察到同样的变化。该团队在进一步的体外实验中发现。MR在高脂饮食诱导的HSCs纤维化过程中起重要作用。同时,MR作为OPN的上游效应介体,与OPN共享下游的HMGB1 [30]。

Wu等为研究miR-21水平与肝纤维化程度的关系,分别检测了健康人群与肝硬化患者的miR-21水平 [31]。结果显示肝硬化患者的miR-21水平升高与肝纤维化的严重程度和活性相关。如果能结合临床上肝硬化患者的相关实验室检查指标及相关患者院外随访数据,miR-21或可作为一个重要的血清标志物来评估肝纤维化程度及其预后。

3.3. miR-21与肝恶性肿瘤

miR-21是一种具有致癌基因或肿瘤抑制基因功能的miRNA,在人类实体恶性肿瘤中通常处于上调状态。既往有研究发现miR-21的上调促进HCC的进展 [15]。在一项针对超500例人实体肿瘤样本(包括肺,乳腺,胃,前列腺,结肠和胰腺肿瘤样本)的大规模研究中,研究者们发现miR-21的过表达现象,并认为该miRNA与肿瘤有着明显的相关性 [32]。Yuan等发现miRNA-21可以通过将HSCs转化为癌症相关成纤维细胞(CAFs)促进肿瘤进展:HCC细胞分泌的miRNA-21可直接靶向PTEN,激活HSCs中丙酮酸脱氢酶激酶1 (PDK1)/AKT信号通路,然后活化的CAFs通过分泌血管生成多种细胞因子促进肝细胞癌的进展,包括血管内皮生长因子(VEGF)、基质金属肽酶-2 (MMP-2)、金属肽酶-9 (MMP-9)、碱性成纤维细胞生长因子(bFGF)和转化生长因子-β (TGF-β)等 [33]。Zhu等发现miR-21可通过miR-21/程序性细胞死亡4 (programmed cell death 4, PDCD4)/转录因子激活蛋白1 (AP-1)反馈环参与肝癌的迁移与侵袭 [34]。此外,也有miR21通过抑制Kruppel样因子5 (KLF5)的表达而促进肝细胞癌的细胞迁移和侵袭的报道 [35]。

Yoon等收集约100名HCC患者的肿瘤与邻近非肿瘤肝组织,并分析其miRNAs的表达,结果显示miR-21在肿瘤组织中表达显著上调且miR-21的过表达与肿瘤进程显著相关 [36]。考虑到肿瘤组织中miR-21的异常表达可以反映血清中miR-21的表达情况,miR-21水平或许与疾病严重程度相关,血清miR-21或可作为HCC诊断和预后的一个指标。TWagenaar等在两个独立的肝癌肿瘤异种移植模型中,使用特异性的miR-21单链寡核苷酸抑制剂(anti-miR-21)抑制肝癌生长。该研究团队认为,miR-21可能是药物干预肿瘤治疗的突破点之一 [37]。

4. miR-21在NAFLD早期阶段的诊断价值

miR-21在不同类型的肝脏疾病中发挥着重要作用。同时,其高度稳定、在循环中易于检测等特点 [20] [38],都使得miR-21具有成为新型生物标志物的潜力。实际上,很多学者已经在该领域进行了大量研究。

Yamada等在一项纳入403名健康检查人员的横断面研究中,使用超声扫描评估参与者肝内脂肪,并通过实时定量PCR检测参与者血清中的miRNA水平,发现NAFLD患者血清中的miR-21水平较无NAFLD者更高 [39]。Becker等收集了137名NAFLD患者在进行治疗之前的血样,并测定其血清miRNA水平,将之与61名健康对照者进行比较,得到了与Yamada等人相似的结果 [40]。但是,也有miR-21作为NAFLD分期的诊断标志物产生相反结果的报导 [41]。这种差异被Zhang等人关注,该团队2021年的一项荟萃分析共纳入14篇出版物的1589名受试者,通过筛选并结合相关文献,对miR-21在HCC早期诊断中的整体诊断价值进行评价。结果表明miR-21在HCC中具有很高的诊断潜力。其敏感性、特异性、PLR、NLR和AUC分别为0.83 (0.77~0.88)、0.80 (0.74~0.85)、4.12 (3.04~5.57)、0.21 (0.15~0.30)和0.88 (0.85~0.91) [42]。

但需值得注意的是,miR-21并非一种仅在肝脏表达的miRNA。miR-21在人体的其他组织中亦有着广泛的表达,如心脏、肾脏、神经细胞以及免疫细胞等 [10]。miR-21循环水平的升高不仅见于肝脏疾病,比如miR21也被认为是许多其他疾病的生物标志物,包括恶性肿瘤、肾纤维化以及糖尿病 [43]。

综合来看,血清miR-21是有作为NAFLD早期诊断的生物标志物的潜力,但由于缺乏标准统一的检验程序及方法,此检验手段距离临床应用还有一定的差距。

5. 结语

许多研究已经证实,miR-21在NAFLD发生发展过程中发挥重要作用,或可成为一种新型生物标志物用于早期诊断NAFLD。但要广泛应用于临床,仍需进一步深入研究。

利益冲突

所有作者均申明不存在利益冲突。

基金项目

重庆市自然科学基金面上项目(cstc2021jcyj-msxmX0320),重庆市渝中区基础研究与前沿探索项目 (20190117)。

NOTES

*通讯作者。

参考文献

[1] 中华医学会内分泌学分会. 非酒精性脂肪性肝病与相关代谢紊乱诊疗共识(第二版) [J]. 临床肝胆病杂志, 2018, 34(10): 2103-2108.
[2] Li, J., Zou, B., Yeo, Y.H., Feng, Y., Xie, X., Lee, D.H., et al. (2019) Prevalence, Incidence, and Outcome of Non-Alcoholic Fatty Liver Disease in Asia, 1999-2019: A Systematic Review and Meta-Analysis. The Lancet Gastroenterology and Hepatology, 4, 389-398.
https://doi.org/10.1016/S2468-1253(19)30039-1
[3] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with An-tisense Complementarity to lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y
[4] Iaquinta, M.R., Lanzillotti, C., Mazziotta, C., Bononi, I., Frontini, F., Mazzoni, E., et al. (2021) The Role of microRNAs in the Osteogenic and Chondrogenic Differentiation of Mesenchymal Stem Cells and Bone Pathologies. Theranostics, 11, 6573-6591.
https://doi.org/10.7150/thno.55664
[5] Nowosad, K., Hordyjewska-Kowalczyk, E. and Tylzanowski, P. (2020) Mutations in Gene Regulatory Elements Linked to Human Limb Malformations. Journal of Medical Genetics, 57, 361-370.
https://doi.org/10.1136/jmedgenet-2019-106369
[6] Huang, P., He, X.-Y. and Xu, M. (2020) The Role of miR-NA-146a and Proinflammatory Cytokines in Carotid Atherosclerosis. BioMed Research International, 2020, Article ID: 6657734.
https://doi.org/10.1155/2020/6657734
[7] Kondkar, A.A. and Abu-Amero, K.K. (2015) Utility of Cir-culating microRNAs as Clinical Biomarkers for Cardiovascular Diseases. BioMed Research International, 2015, Article ID: 821823.
https://doi.org/10.1155/2015/821823
[8] Lagos-Quintana, M., Rauhut, R., Lendeckel, W. and Tuschl, T. (2001) Identification of Novel Genes Coding for Small Expressed RNAs. Science, 294, 853-858.
https://doi.org/10.1126/science.1064921
[9] Surina, S., Fontanella, R.A., Scisciola, L., Marfella, R., Paolisso, G. and Barbieri, M. (2021) miR-21 in Human Cardiomyopathies. Frontiers in Cardiovascular Medicine, 8, Article ID: 767064.
https://doi.org/10.3389/fcvm.2021.767064
[10] Ludwig, N., Leidinger, P., Becker, K., Backes, C., Fehlmann, T., Pallasch, C., et al. (2016) Distribution of miRNA Expression across Human Tissues. Nucleic Acids Research, 44, 3865-3877.
https://doi.org/10.1093/nar/gkw116
[11] Loyer, X., Paradis, V., Hénique, C., Vion, A.-C., Colnot, N., Guerin, C.L., et al. (2016) Liver microRNA-21 Is Overexpressed in Non-Alcoholic Steatohepatitis and Contributes to the Disease in Experimental Models by Inhibiting PPARα Expression. Gut, 65, 1882-1894.
https://doi.org/10.1136/gutjnl-2014-308883
[12] Zhang, Z., Zha, Y., Hu, W., Huang, Z., Gao, Z., Zang, Y., et al. (2013) The Autoregulatory Feedback Loop of microRNA-21/Programmed Cell Death Protein 4/Activation Protein-1 (MiR-21/PDCD4/AP-1) as a Driving Force for Hepatic Fibrosis Development. Journal of Biological Chemistry, 288, 37082-37093.
https://doi.org/10.1074/jbc.M113.517953
[13] Tang, J., Li, X., Cheng, T. and Wu, J. (2021) miR-21-5p/SMAD7 Axis Promotes the Progress of Lung Cancer. Thoracic Cancer, 12, 2307-2313.
https://doi.org/10.1111/1759-7714.14060
[14] Arghiani, N. and Matin, M.M. (2021) miR-21: A Key Small Mole-cule with Great Effects in Combination Cancer Therapy. Nucleic Acid Therapeutics, 31, 271-283.
https://doi.org/10.1089/nat.2020.0914
[15] Hong, Y., Ye, M., Wang, F., Fang, J., Wang, C., Luo, J., et al. (2021) MiR-21-3p Promotes Hepatocellular Carcinoma Progression SMAD7/YAP1 Regulation. Frontiers in Oncology, 11, Ar-ticle ID: 642030.
https://doi.org/10.3389/fonc.2021.642030
[16] Parlati, L., Régnier, M., Guillou, H. and Postic, C. (2021) New Targets for NAFLD. JHEP Reports, 3, Article ID: 100346.
https://doi.org/10.1016/j.jhepr.2021.100346
[17] Wu, H., Ng, R., Chen, X., Steer, C.J. and Song, G. (2016) MicroRNA-21 Is a Potential Link between Non-Alcoholic Fatty Liver Disease and Hepatocellular Carcinoma via Modulation of the HBP1-p53-Srebp1c Pathway. Gut, 65, 1850-1860.
https://doi.org/10.1136/gutjnl-2014-308430
[18] Calo, N., Ramadori, P., Sobolewski, C., Romero, Y., Maeder, C., Fournier, M., et al. (2016) Stress-Activated in Hepatocytes Promotes Lipid and Glucose Metabolic Disorders Associated with High-Fat Diet Consumption. Gut, 65, 1871-1881.
https://doi.org/10.1136/gutjnl-2015-310822
[19] 赵晓云, 邵凯. 微小RNA-21在胰岛素抵抗和糖尿病伴发非酒精性脂肪肝发病中的作用[J]. 中国医学科学院学报, 2016, 38(2): 144-149.
[20] Zhang, X., Deng, F., Zhang, Y., Zhang, X., Chen, J. and Jiang, Y. (2021) PPARγ Attenuates He-patic Inflammation and Oxidative Stress of Non-Alcoholic Steatohepatitis via Modulating the miR-21-5p/SFRP5 Path-way. Molecular Medicine Reports, 24, Article No. 823.
https://doi.org/10.3892/mmr.2021.12463
[21] Oh, C.J., Kim, J.-Y., Min, A.-K., Park, K.-G., Harris, R.A., Kim, H.-J., et al. (2012) Sulforaphane Attenuates Hepatic Fibrosis via NF-E2-Related Factor 2-Mediated Inhibition of Transforming Growth Factor-β/Smad Signaling. Free Radical Biology and Medicine, 52, 671-682.
https://doi.org/10.1016/j.freeradbiomed.2011.11.012
[22] Mishra, P.J. and Bertino, J.R. (2009) MicroRNA Polymorphisms: The Future of Pharmacogenomics, Molecular Epidemiology and Individualized Medicine. Pharmacogenomics, 10, 399-416.
https://doi.org/10.2217/14622416.10.3.399
[23] Fabregat, I. and Ca-ballero-Díaz, D. (2018) Transforming Growth Factor-β-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogene-sis. Frontiers in Oncology, 8, Article 357.
https://doi.org/10.3389/fonc.2018.00357
[24] Zhou, X.-L., Xu, H., Liu, Z.-B., Wu, Q.-C., Zhu, R.-R. and Liu, J.-C. (2018) miR-21 Promotes Cardiac Fibroblast-to-Myofibroblast Transfor-mation and Myocardial Fibrosis by Targeting Jagged1. Journal of Cellular and Molecular Medicine, 22, 3816-3824.
https://doi.org/10.1111/jcmm.13654
[25] Friedman, S.L. (2008) Mechanisms of Hepatic Fibrogenesis. Gastroenterology, 134, 1655-1669.
https://doi.org/10.1053/j.gastro.2008.03.003
[26] Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-β Family Signalling. Nature, 425, 577-584.
https://doi.org/10.1038/nature02006
[27] He, X., Xie, J., Zhang, D., Su, Q., Sai, X., Bai, R., et al. (2015) Recom-binant Adeno-Associated Virus-Mediated Inhibition of microRNA-21 Protects Mice Against the Lethal Schistosome In-fection by Repressing Both IL-13 and Transforming Growth Factor Beta 1 Pathways. Hepatology (Baltimore, MD), 61, 2008-2017.
https://doi.org/10.1002/hep.27671
[28] Nakao, A., Afrakhte, M., Morén, A., Nakayama, T., Christian, J.L., Heuchel, R., et al. (1997) Identification of Smad7, a TGFβ-Inducible Antagonist of TGF-Beta Signalling. Nature, 389, 631-635.
https://doi.org/10.1038/39369
[29] Jarman, E.J. and Boulter, L. (2020) Targeting the Wnt Signaling Pathway: The Challenge of Reducing Scarring without Affecting Repair. Expert Opinion on Investigational Drugs, 29, 179-190.
https://doi.org/10.1080/13543784.2020.1718105
[30] Tang, M., Jia, H., Chen, S., Yang, B., Patpur, B.K., Song, W., et al. (2021) Significance of MR/OPN/HMGB1 Axis in NAFLD-Associated Hepatic Fibrogenesis. Life Sciences, 264, Article ID: 118619.
https://doi.org/10.1016/j.lfs.2020.118619
[31] Wu, K., Ye, C., Lin, L., Chu, Y., Ji, M., Dai, W., et al. (2016) In-hibiting miR-21 Attenuates Experimental Hepatic Fibrosis by Suppressing Both the ERK1 Pathway in HSC and Hepato-cyte EMT. Clinical Science (Lond), 130, 1469-1480.
https://doi.org/10.1042/CS20160334
[32] Volinia, S., Calin, G.A., Liu, C.-G., Ambs, S., Cimmino, A., Petrocca, F., et al. (2006) A microRNA Expression Signature of Human Solid Tumors Defines Cancer Gene Targets. Proceedings of the National Academy of Sciences of the United States of America, 103, 2257-2261.
https://doi.org/10.1073/pnas.0510565103
[33] Zhou, Y., Ren, H., Dai, B., Li, J., Shang, L., Huang, J., et al. (2018) Hepatocellular Carcinoma-Derived Exosomal miRNA-21 Contributes to Tumor Progression by Converting Hepatocyte Stellate Cells to Cancer-Associated Fibroblasts. Journal of Experimental & Clinical Cancer Research, 37, Article No. 324.
https://doi.org/10.1186/s13046-018-0965-2
[34] Zhu, Q., Wang, Z., Hu, Y., Li, J., Li, X., Zhou, L., et al. (2012) miR-21 Promotes Migration and Invasion by the miR-21-PDCD4-AP-1 Feedback Loop in Human Hepatocellular Car-cinoma. Oncology Reports, 27, 1660-1668.
https://doi.org/10.3892/or.2012.1682
[35] Wang, J., Chu, Y., Xu, M., Zhang, X., Zhou, Y. and Xu, M. (2019) miR-21 Promotes Cell Migration and Invasion of Hepatocellular Carcinoma by Targeting KLF5. Oncology Letters, 17, 2221-2227.
https://doi.org/10.3892/ol.2018.9843
[36] Yoon, J.S., Kim, G., Lee, Y.R., Park, S.Y., Tak, W.Y., Kweon, Y.-O., et al. (2018) Clinical Significance of microRNA-21 Expression in Disease Progression of Patients with Hepatocellular Carcinoma. Biomarkers in Medicine, 12, 1105-1114.
https://doi.org/10.2217/bmm-2018-0096
[37] Wagenaar, T.R., Zabludoff, S., Ahn, S.-M., Allerson, C., Arlt, H., Baffa, R., et al. (2015) Anti-miR-21 Suppresses Hepatocellular Carcinoma Growth via Broad Transcriptional Network Deregulation. Molecular Cancer Research, 13, 1009-1021.
https://doi.org/10.1158/1541-7786.MCR-14-0703
[38] Arrese, M., Eguchi, A. and Feldstein, A.E. (2015) Circu-lating microRNAs: Emerging Biomarkers of Liver Disease. Seminars in Liver Disease, 35, 43-54.
https://doi.org/10.1055/s-0034-1397348
[39] Yamada, H., Suzuki, K., Ichino, N., Ando, Y., Sawada, A., Osakabe, K., et al. (2013) Associations between Circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and Non-Alcoholic Fatty Liver. Clinica Chimica Acta, 424, 99-103.
https://doi.org/10.1016/j.cca.2013.05.021
[40] Becker, P.P., Rau, M., Schmitt, J., Malsch, C., Hammer, C., Bantel, H., et al. (2015) Performance of Serum microRNAs-122, -192 and -21 as Biomarkers in Patients with Non-Alcoholic Steatohepatitis. PLOS ONE, 10, e0142661.
https://doi.org/10.1371/journal.pone.0142661
[41] Sun, C., Huang, F., Liu, X., Xiao, X., Yang, M., Hu, G., et al. (2015) miR-21 Regulates Triglyceride and Cholesterol Metabolism in Non-Alcoholic Fatty Liver Disease by Targeting HMGCR. International Journal of Molecular Medicine, 35, 847-853.
https://doi.org/10.3892/ijmm.2015.2076
[42] Zhang, H., Ding, R. and Chen, D. (2021) Value of miR-21 Levels as Potential Biomarkers in the Early Diagnosis of Hepatocellular Carcinoma: A Meta-Analysis. Biomarkers, 26, 586-597.
https://doi.org/10.1080/1354750X.2021.1955976
[43] Jenike, A.E. and Halushka, M.K. (2021) miR-21: A Non-Specific Biomarker of All Maladies. Biomarker Research, 9, Article No. 18.
https://doi.org/10.1186/s40364-021-00272-1