烤烟托盘全基质湿润育苗技术研究
Demonstration Study on the Whole Substrate Moist Seedling Technology of Flue-Cured Tobacco Tray
DOI: 10.12677/BR.2023.121001, PDF, HTML, XML, 下载: 207  浏览: 564 
作者: 田茂成, 张明发*, 向德明, 滕 凯:湖南湘西州烟草公司生产技术中心,湖南 吉首;覃 浪, 梅 沣, 徐 兵, 戴衍晨, 王安明:湘西自治州烟草公司古丈县分公司,湖南 古阳
关键词: 托盘基质湿润育苗烤烟Tray Substrate Moist Seedling Flue-Cured Tobacco
摘要: 为探究经济适宜的育苗方法,通过各地点大棚对比育苗试验与半边田示范开展了烤烟托盘全基质湿润育苗技术示范研究。结果表明:1) 湿润育苗的烟苗根系更加发达,有利于促进大田移栽早生快发。2) 但育苗成本高于漂浮育苗。3) 其中部叶长、上部叶长及上部叶宽优于常规200孔漂浮苗,其增幅分别为23.45%、23.3%及13.6%;能提高烤烟亩产量、亩产值与均价。在水资源丰富的地区湿润育苗值得推广。本研究可为现代集约大棚自动化育苗提供理论参考。
Abstract: In order to explore the economical and suitable seedling raising method, the demonstration study on the whole matrix moist seedling raising technology of flue-cured tobacco tray was carried out through the comparative seedling raising experiment of greenhouse and half field demonstration. The results showed as follows: 1) The roots of tobacco seedlings reared in moist condition were more developed, which was conducive to promoting early growth and rapid growth in field transplanting. 2) The cost of seedling raising was higher than that of floating seedling raising. 3) The middle leaf length, the upper leaf length and the upper leaf width were better than those of the conventional 200-well floating seedlings, and the increases were 23.45%, 23.3% and 13.6%, respectively. It can improve the yield per mu, the output value per mu and the average price of flue-cured tobacco. It is worth promoting moist seedling in the area with abundant water resources. This study can provide theoretical reference for modern intensive greenhouse automatic seedling raising.
文章引用:田茂成, 张明发, 覃浪, 梅沣, 徐兵, 戴衍晨, 王安明, 向德明, 滕凯. 烤烟托盘全基质湿润育苗技术研究[J]. 植物学研究, 2023, 12(1): 1-7. https://doi.org/10.12677/BR.2023.121001

1. 引言

育苗方式研究对作物生长及生产力形成有重要意义 [1] [2] [3] [4]。前人就多种作物育苗期间温湿度条件、遗传因素、栽培措施与烟苗素质的关系进行了较多报道 [5] [6] [7] [8] [9],育苗方法的作用凸显,甚至影响茎秆生长、穗粒形成、糖质量分数、生育期等作物品质和产量 [9] - [15]。但有关烤烟托盘全基质湿润育苗的研究较少。鉴于此,在湘西连续多年进行烤烟托盘全基质湿润育苗对烤烟生长的研究与示范,获得了国家知识产权局的专利证书,分析它们与烤烟早生快发的规律,以期为合理选择湘西烤烟育苗方法,培养健壮烟苗,探索采用湿润育苗降低烟农烤烟种植成本、增加烤烟种植收入,为烟苗生产降本增效提供理论依据。

2. 材料与方法

2.1. 示范地点

育苗示范区为古丈县红石林镇先锋村育苗大棚,育苗户向繁荣。

2.2. 示范材料

苗期:育苗温室大棚1个1440平方米(24 × 60)、播种器2个、干燥箱1台、卷尺1把、游标卡尺子1把,天平1台,72孔、98孔塑料育苗盘(54 × 28 × 4.5,江西三友泡塑有限公司)、基质、黑池膜、育苗营养液(湖南省天亮农业技术开发有限公司,N:P2O5:K2O = 16:8:16,含硝态氮肥,含100 mg微量元素水剂)药剂等漂浮育苗物资若干。大田期:套餐物资若干。

2.3. 处理设计

2.3.1. 育苗

整棚采用7276张72孔、98孔塑料育苗盘湿润育苗(72孔盘6544张、98孔盘732张),育苗技术按2020年湘西州烟草公司自行制定的《烤烟托盘全基质湿润育苗技术规程》实施,水肥供应方式采取出苗前浅水,出苗后叶面喷淋方式。烤烟品种湘烟7号、云烟87,2021年1月28日播种,移栽前剪叶2次。4月16日发苗移栽。设200孔漂浮育苗为对照,育苗对照区为古丈县红石林镇龙天平村育苗大棚,育苗户刘志才,育苗品种湘云烟87,2021年1月28日播种。移栽前后测定72孔、98孔湿润育苗及200孔漂浮育苗等3种烟苗素质。

2.3.2. 大田示范

湿润育苗大棚理论育苗420亩,实际湿润育苗大田示范8户349亩,见表1。常规200孔漂浮育苗对照户选为断龙山镇溪龙村李祖海,种植面积110亩,田土类型为旱地坡土。湿润育苗示范观察户选为古阳镇罗依溪村李珍梅,该户全部采用湿润育苗,适宜产值分析,种植品种为云烟87,种植面积45亩,田土类型为旱地坡土。在采烤前选择代表性丘块分别记录各示范户与对照户烟叶的田间农艺性状,收购后分户收集烟叶交售等级、数量、金额等情况。

Table 1. Wet seedling demonstration households and demonstration in 2021

表1. 2021年湿润育苗示范户及示范面积(亩)

3. 结果分析

3.1. 烟苗素质与育苗成本

3.1.1. 烟苗素质

于成苗期4月19日开展72孔、98孔盘湿润育苗及200孔漂浮育苗烟苗素质观测,整棚观测叶色、群体整齐度、病虫害情况,并分别随机选取各10株3种育苗方式烟苗在州烟草公司花垣科研基地进行具体指标测量,结果见表2

表2可知,3种育苗方式群体整齐度和病虫防治做得好,没有明显差别。2种苗盘规格湿润育苗方式均达到了壮苗标准,200孔常规漂浮育苗稍欠,2种苗盘湿润育苗叶色为浅绿,韧性为好,漂浮育苗颜色为淡黄–浅绿,韧性较差;漂浮苗茎高为6.2厘米,分别比72孔、98孔盘湿润苗高出4.55%、18.77%;茎粗值为72孔盘湿润育苗最大,为3.585毫米,比最小的98孔盘湿润苗的3.168毫米高出13.16%,比漂浮苗高出5.6%。72孔湿润苗最长,为7.18厘米,与98孔盘湿润苗的7厘米相差不大,比漂浮苗的5.08厘米长41.34%;10株根干重72孔盘与98孔盘湿润育苗分别为0.28克、0.27克,分别比漂浮苗的0.09克高出211.11%及200%,达到显著差异水平,说明湿润育苗方式下,烟苗根系更加发达,有利于促进大田移栽早生快发。

Table 2. Quality determination of wet seedling demonstration tobacco seedlings in 2021

表2. 2021年湿润育苗示范烟苗素质测定

测定日期:2021年4月19日,测定人:田茂成、向德明、覃浪、梅丰、徐兵、滕凯。说明:茎粗采用游标卡尺测定,根系干重采用烘干法测定。湿润育苗苗床期78天。

3.1.2. 育苗成本

分别测算2种孔径湿润育苗与常规漂浮育苗及假植育苗的育苗温室育苗容量与育苗成本,见表3

Table 3. Comparison of seedling capacity and cost of several seedling methods in 2021

表3. 几种育苗方式育苗容量及育苗成本比较2021

从育苗温室育苗容量看,408孔漂浮 + 假植的最大,每1000平米可育苗1446亩,分别是200孔漂浮、98孔湿润及72孔湿润育苗的2.34倍、2.84倍及3.94倍,其次是200孔漂浮苗,每1000平米可育苗617.9亩,分别是98孔湿润及72孔湿润育苗的1.21倍、1.68倍,第三是98孔湿润育苗,每1000平米可育苗508.8亩,是72孔湿润育苗367.4亩的1.38倍。

从育苗成本看,营养坨假植成本最高,每亩达147.8元,72孔盘湿润育苗其次,每亩104.26元,比营养坨假植成本低29.46%,98孔盘湿润每亩72.64元,比72孔盘低30.33%,漂浮苗最低,每亩仅49.13元,比98孔湿润苗低32.37%。营养坨假植成本主要高在假用工费每亩100元,湿润育苗成本高于漂浮育苗,主要是出苗后肥水供应方式改为叶面喷淋后水肥供应用工成本的增加,另外苗池的平整也需要一定的成本。在育苗物资成本构成最高的基质用量看,72孔湿润苗每亩需0.055方,是200孔漂浮苗0.038方的1.45倍,而98孔湿润苗每亩仅需0.028方,是200孔漂浮苗的73.68%。

3.2. 大田长势及农艺性状分析

7月13日~16日在采烤前对示范区和对照区烟叶大田长势及农艺性状进行了观察,见表4

示范区烟苗移栽后基本上无返苗期,较漂浮育苗缩短返苗期6 d,湿润育苗的烤烟大田生长期长势较快,较早的进入团棵期,长势较一致。由表4可知,对比细塔村的湿润育苗和营养坨假植育苗烟叶,品种都是湘烟7号,具有一定的可比性,湿润育苗的株高为118厘米,比营养坨的低10.38%,但中部叶宽、上部叶宽分别比营养坨的高出9.05%及13%,其他指标相差不大。对比罗依溪村的湿润育苗与高峰镇岩坨村的200孔漂浮育苗,品种都是云烟87,也具有一定的可比性,湿润育苗的株高为93.4厘米,比200孔漂浮苗的低15.25%,但茎围比营养坨的高11.76%,中部叶长、上部叶长及上部叶宽分别比200孔漂浮苗的多出23.45%、23.3%及13.6%。其他指标相差不大。

Table 4. Determination of field growth and agronomic characters of flue-cured tobacco leaf with moist seedling cultivation

表4. 烤烟湿润育苗示范烟叶大田长势及农艺性状测定

观测人:覃浪、田茂成、姚绍军,观测日期:2021年7月13~16日cm。

3.3. 产值分析

示范区与对照区烤烟均在古丈县红石林中心点交售,散叶分级与烟叶评级均在同一条件下进行,通过收购系统数据整理其产值,见表5

Table 5. Analysis of output value of wetted seedling in field demonstration tobacco

表5. 湿润育苗田间示范烟叶产值分析

表5可知,示范区亩产量为128.51公斤/亩,对照区烤烟亩产量为98.42公斤/亩,高出对照区亩产量30.09公斤/亩,高幅30.57%;示范区烤烟产值达3589.52元/亩,对照区烤烟产值为2603.21元/亩,示范区高于对照区986.31元/亩,高幅37.89%;示范区收购均价为27.93元/公斤,对照区收购均价为26.45元/公斤,示范区高于对照区1.48元/公斤。

4. 小结与讨论

1) 湿润育苗在苗期阶段用工成本稍大于漂浮育苗。但烟苗根系更加发达,达到两段式假植育苗标准,可以直接移栽,无还苗期;在大田生长期的主要农艺性状要好于漂浮育苗;湿润育苗的产量、产值及均价等经济效益指标要显著优于漂浮育苗 [16] [17] [18]。因此,湿润育苗具有极大的推广价值,但推广主要前提是要配套相应的水肥供应设施及苗池要很平整。

2) 农艺性状观测由于选取的示范户与对照户在品种、田土类型、施肥水平及打顶留叶等方面皆有较大不同,对示范结果有一定的影响。

3) 示范户全部采用同一育苗方式的很少,造成产值分析能够选择的示范户仅1户,对示范结果分析有一定的影响。

4) 湿润育苗成本高于漂浮育苗,主要是出苗后肥水供应方式改为叶面喷淋后水肥供应用工成本的增加,另外苗池的平整也需要一定的成本。

5. 结论

湿润育苗方式下,烟苗根系更加发达,长势较一致,有利于促进大田移栽早生快发。比常规营养坨假植成本低,但高于漂浮育苗,其中部叶长、上部叶长及上部叶宽优于常规200孔漂浮苗,其增幅分别为23.45%、23.3%及13.6%;能提高烤烟亩产量、亩产值与均价,亩产值增幅37.89%。

NOTES

*通讯作者。

参考文献

[1] Yi, Q., Liang, B., Nan, Q., et al. (2020) Temporal Physicochemical Changes and Transformation of Biochar in a Rice Paddy: Insights from a 9-Year Field Experiment. Science of the Total Environment, 721, Article ID: 137670.
https://doi.org/10.1016/j.scitotenv.2020.137670
[2] 马新明, 席磊, 熊淑萍, 杨娟. 大田期烟草根系构型参数的动态变化[J]. 应用生态学报, 2006, 17(3): 373-376.
[3] 廖红, 戈振场, 严小龙. 水磷耦合胁迫下植物磷吸收的理想根构型: 模拟与应用[J]. 科学通报, 2001, 46(8): 641-646.
[4] Zhao, Y., Zhen, Z., Wang, Z., Zeng, L. and Yan, C. (2020) Influence of Environmental Factors on Arnseic Accumulation and Biotransformation Using the Aquatic Plant Species Hydrilla verticillata. Journal of environmental Sciences, 90, 244-252.
https://doi.org/10.1016/j.jes.2019.12.010
[5] Lehmann, J., Rillig, M. C., Thies, J., et al. (2011) Biochar Effects on Soil Biota—A Review. Soil Biology & Biochemistry, 43, 1812-1836.
https://doi.org/10.1016/j.soilbio.2011.04.022
[6] Major, J., Rondon, M., Molina, D., Riha, S.J. and Lehmann, J. (2010) Maize Yield and Nutrition during 4 Years after Biochar Application to a Colombian Savanna Oxisol. Plant and Soil, 333, 117-128.
https://doi.org/10.1007/s11104-010-0327-0
[7] 张亚杰, 李京, 彭红坤, 等. 油菜生育期动态模拟模型的构建[J]. 作物学报, 2015, 41(5): 766-777.
[8] 钱益亮, 崔会会, 邵伏文, 等. 有效积温对烤烟叶龄及成熟度的影响[J]. 中国烟草科学, 2013, 34(6): 15-19.
[9] Li, Y., Feng, J., Liu, H., et al. (2016) Genetic Diversity and Pathogenicity of Ralstonia solanacearum Causing Tobacco Bacterial Wilt in China. Plant Disease, 100, 1288-1296.
https://doi.org/10.1094/PDIS-04-15-0384-RE
[10] Mansfield, J., Genin, S., Magori, S., et al. (2012) Top 10 Plant Pathogenic Bacteria in Molecular Plant Pathology. Molecular Plant Pathology, 13, 614-629.
https://doi.org/10.1111/j.1364-3703.2012.00804.x
[11] Kolb, S.E., Fermanich, K.J. and Dornbush, M.E. (2009) Effect of Charcoal Quantity on Microbial Biomass and Activity in Temperate Soils. Soil Science Society of America, 73, 1173-1181.
https://doi.org/10.2136/sssaj2008.0232
[12] Gomez, J.D., Denef, K., Stewart, C.E., Zheng, J. and Cotrufo, M.F. (2014) Biochar Addition Rate Influences Soil Microbial Abundance and Activity in Temperate Soils. European Journal of Soil Science, 65, 28-39.
https://doi.org/10.1111/ejss.12097
[13] Li, D., Hockaday, W.C., Masiello, C.A. and Alvarez, P.J. (2011) Earthworm Avoidance of Biochar Can Be Mitigated by Wetting. Soil Biology and Biochemistry, 43, 1732-1737.
https://doi.org/10.1016/j.soilbio.2011.04.019
[14] Bailey, V.L., Fansler, S.J., Smith, J.L. and Bolton Jr., H. (2011) Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization. Soil Biology and Biochemistry, 43, 296-301.
https://doi.org/10.1016/j.soilbio.2010.10.014
[15] Paz-Ferreiro, J., Fu, S., Méndez, A. and Gascó, G. (2014) Interactive Effects of Biochar and the Earthworm Pontoscolex corethrurus on Plant Productivity and Soil Enzyme Activities. Journal of Soils and Sediments, 14, 483-494.
https://doi.org/10.1007/s11368-013-0806-z
[16] Galvez, A., Sinicco, T., Cayuela, M.L., Mingorance, M.D., Fornasier, F. and Mondini, C. (2012) Short Term Effects of Bioenergy by-Products on Soil C and N Dynamics, Nutrient Availability and Biochemical Properties. Agriculture, Ecosystems and Environment, 160, 3-14.
https://doi.org/10.1016/j.agee.2011.06.015
[17] Oleszczuk, P., Jośko, I., Futa, B., Pasieczna-Patkowska, S., Pałys, E. and Kraska, P. (2014) Effect of Pesticides on Microorganisms, Enzymatic Activity and Plant in Biochar-Amended Soil. Geoderma, 214-215, 10-18.
https://doi.org/10.1016/j.geoderma.2013.10.010
[18] Wu, F., Jia, Z., Wang, S., Chang, S.X. and Startsev, A. (2013) Contrasting Effects of Wheat Straw and Its Biochar on Greenhouse Gasemissions and Enzyme Activities in a Chernozemic Soil. Biology and Fertility of Soils, 49, 555-565.
https://doi.org/10.1007/s00374-012-0745-7