烧结制度对钙长石质耐火材料显微结构的影响
The Influences of Sintering Systems on Microstructure of Anorthite Light Heat Insulation Refractory Materials
摘要: 以镁渣,高岭土和氧化铝为原料烧结制备钙长石质隔热耐火材料,研究了烧成温度和保温时间对样品显微结构的影响。结果表明:耐火材料主要包括钙长石和氧化铝两种晶相,且随温度的升高而增加。钙长石晶粒主要为板状和等轴状,随温度升高粒径由1 μm长大到10 μm,同时聚集体逐渐增大,气孔增大并孤立。在1350℃~1370℃为较适宜烧结温度,粒径在2~5 μm,体积密度在1.52 g/cm3,显气孔率在60%。在1370℃下烧结的样品,随保温时间的延长,晶粒长大到5 μm后不再变化,聚集体逐渐小而均匀,气孔随之小而均匀,体积密度在1.50~1.53 g/cm3,显气孔率在57%~60%。
Abstract: The magnesium slag, kaolin and alumina as raw material, sinter anorthite lightweight insulating refractory. The paper studied firing temperature and holding time affecting the sample microstructures. The results showed that: the new crystalline phases are mainly anorthite and alumina. With increasing temperature, grains increases which are mainly plate-like bodies and cylindrical bodies. At the same time, with the temperature grains grow up from 1 μm to 10 μm, aggregates increases, porosity increases and isolated. 1350˚C - 1370˚C are the appropriate sintering temperatures with grains size in the 2 - 5 μm, volume density 1.52 g/cm3 and the rate of open pores 60%. In 1370˚C temperature, with holding time changing, grains size does not change after the 5 μm, but the bond formed by the aggregate grains gradually from large to small and uniformity, along with uniform pores, volume density 1.50 - 1.53 g/cm3 and the rate of open pores 57% - 60%.
文章引用:冯芙蓉, 柴跃生, 田玉明, 秦宇星. 烧结制度对钙长石质耐火材料显微结构的影响[J]. 材料科学, 2012, 2(2): 83-88. http://dx.doi.org/10.12677/ms.2012.22015

参考文献

[1] V. V. Primachenko, V. V. Martynenko and L. A. Dergaputskaya. The research of an influence of a number of technological factors on anorthite synthesis in lightweight refractory. Osaka: Proceedings of UNITECR’03, 2003: 190-193.
[2] V. V. Primachenko, V. V. Martynenko, L. A. Dergaputskaya, et al. Anorthite light weight material with micro porous structure. Cancun: Proceedings of UNITECR’01, 2001: 1193-1195
[3] 李楠, 顾华志, 赵惠忠编著. 耐火材料学[M]. 北京: 冶金工业出版社, 2010.
[4] V. V. Martynenko, V. V. Primachenko and L. A. Dergaputskaya. High performance heat insulating constable with micro porous anorthite aggregate. Dresden: Proceedings of UNITECR’07, 2007: 125-128.
[5] 顾幸勇, 吴中庆, 何样花. 新型陶瓷基片材料的研制[J]. 中国陶瓷工业, 2000, 7(1): 1-8.
[6] 昝和平, 赵海晋, 高建荣等. 镁渣配料煅烧熟料形成过程的试验研究[J]. 水泥, 2007, 7: 26-28.
[7] 赵爱琴. 利用镁渣研制新型墙体材料[J]. 山西建筑, 2003, 29(17): 48-49.
[8] 任玉生, 徐宁. 金属镁废渣在循环流化床锅炉烟气脱硫中的应用[J]. 再生资源与循环经济, 2008, 1(2): 38-40.
[9] 咎和平, 赵海晋, 高建荣等. 镁渣配料煅烧水泥熟料的动力学研究[J]. 武汉理工大学学报, 2007, 29(5): 38-42.
[10] 肖力光, 王思宇, 雒锋. 镁渣工业废渣应用现状的研究及前景分析[J]. 吉林建筑工程学院材料科学与工程学院, 2008, 25(1): 1-7.
[11] 2010年中国镁行业研究报告[URL], 2011. http://www.askci.com