基于网络药理学探究淡豆豉对缺血性卒中的作用机制
To Investigate the Mechanism of Sojae Semen Praeparatum Sauce on Ischemic Stroke Based on Network Pharmacology
DOI: 10.12677/TCM.2023.122061, PDF, HTML, XML, 下载: 132  浏览: 220  科研立项经费支持
作者: 刘林潇, 全德森, 杜京晏, 彭景熠, 蔡 琨*:贵州中医药大学,贵州 贵阳
关键词: 缺血性卒中网络药理学淡豆豉Ischemic Stroke Network Pharmacology Sojae Semen Praeparatum
摘要: 目的:通过网络药理学探讨淡豆豉对缺血性卒中(Ischemic stroke, IS)的作用机制。方法:通过TCMSP数据库和Uniprot对淡豆豉的有效成分和靶点进行筛选;使用OMIM、DisGeNET、GeneCards数据库收集IS相关靶点。将IS相关靶点与淡豆豉有效成分靶点的交集作为淡豆豉防治IS的潜在作用靶点,借助STRING数据库和Cytoscape3.9.1软件的“CytoNCA”绘制PPI图,利用DAVID 2021数据库和微生信平台进行GO和KEGG可视化分析。结果:筛选出淡豆豉中含有5个活性成分及34个AS潜在作用靶点,其中蛋白互作显示ESR1、PPARG、GSK3B等是淡豆豉防治IS的关键靶点;KEGG显示淡豆豉主要通过IL-17信号通路来发挥防治AS的作用。结论:本研究初步探讨了淡豆豉治疗IS,可能是通过作用于ESR1、PPARG、GSK3B等关键靶点和IL-17信号通路以及其他疾病,进而发挥治疗缺血性卒中的作用。
Abstract: Objective: To investigate the mechanism of Sojae Semen Praeparatum on ischemic stroke (IS) by network pharmacology. Methods: The active ingredients and targets of Sojae Semen Praeparatum were screened by TCMSP database and Uniprot, and the IS-related targets were collected by OMIM, DisGeNET and GeneCards databases. The intersection of IS-related targets and active ingredient targets of Sojae Semen Praeparatum was used as a potential target for the prevention and treatment of IS by Sojae Semen Praeparatum. PPI maps were drawn with the help of STRING database and “CytoNCA” of Cytoscape3.9.1 software, and GO and KEGG visualization analyses were performed using DAVID 2021 database and Microbiology Information platform. Results: Sojae Semen Praeparatum contained 5 active components and 34 potential targets of AS, of which ESR1, PPARG and GSK3B were the key targets of Sojae Semen Praeparatum to prevent and treat IS, and KEGG showed that Sojae Semen Praeparatum mainly played a role in preventing and treating AS through IL-17 signaling pathway. Conclusion: This study preliminarily investigated the therapeutic effect of Sojae Semen Praeparatum on IS, which may play a role in the treatment of ischemic stroke by acting on key targets such as ESR1, PPARG, GSK3B, IL-17 signaling pathway and other diseases.
文章引用:刘林潇, 全德森, 杜京晏, 彭景熠, 蔡琨. 基于网络药理学探究淡豆豉对缺血性卒中的作用机制[J]. 中医学, 2023, 12(2): 401-410. https://doi.org/10.12677/TCM.2023.122061

1. 引言

脑卒中是全球死亡和长期残疾的主要原因之一 [1] 。当主要脑血管被阻断,剥夺下游组织的氧气和营养物质,并导致梗死核心的细胞几分钟内死亡时,就会发生缺血性卒中(Ischemic stroke, IS) [2] 。死亡细胞释放促炎信号,激活驻留的星形胶质细胞/小胶质细胞,启动免疫细胞从外周浸润到受损组织中,导致血脑屏障破坏,加剧细胞死亡,这一过程被称为继发性炎症,可在初始损伤后持续数天至数周 [3] 。卒中的急性治疗针对静脉溶栓和/或血管内血栓切除术后风险组织的早期再灌注,并通过管理液体量、BP和心血管状态优化血流动力学状态 [4] 。抗血小板和抗凝药物是早期预防IS的首要选择,但出血风险仍不可避免。缺血性卒中属于祖国医学“中风”范畴,又名“缺血性中风”。卒中的发生病因病机复杂,以虚、火、风、痰、气、瘀为六大常见原因,多相兼致病,致机体阴阳失调,气血逆乱,上犯于脑。随着传统医学的发展,中医药在临床疾病的预防和治疗中发挥着显著作用,淡豆豉(Sojae Semen Praeparatum),为豆科植物大豆Glycine max (L.) Merr.成熟的种子经过发酵加工后的产品,始载于《名医别录》,作“豉,味苦,寒,无毒” [5] [6] 。研究表明,淡豆豉具有调血脂、降血糖、降血压、抗氧化、溶解血栓及类雌激素等药理作用 [7] 。淡豆豉预防IS的机制尚不清楚,故本研究利用网络药理学对淡豆豉的有效成分及作用靶点进行筛选,并对淡豆豉作用于IS的信号通路和生物学过程进行预测,为临床预防IS提供新思路。

2. 材料与方法

2.1. 淡豆豉相关成分的筛选

检索中药系统药理学TCMSP数据库(https://old.tcmsp-e.com/tcmsp.php)中淡豆豉的有效成分,得到成分吸收、分布、代谢和排泄特性,包括口服生物利用度(oral bioavailability, OB)和类药性(druglikeness, DL)等信息。利用口服生物利用度OB (≥20%)和类药性DL (≥0.12)进行筛选 [8] ,筛选淡豆豉有效靶点成分,通过Uniprot (https://www.uniprot.org/)中提取基因名,将获取的有效成分靶点进行蛋白名称与基因symbol的转换 [9] 。

2.2. AS疾病相关靶点的筛选

在OMIM数据库(https://www.omim.org/)、DisGeNET数据库(https://www.disgenet.org/)和GeneCards数据库(https://www.genecards.org/) [10] [11] 中以“Ischemic stroke”为关键词收集疾病靶点,在不影响后续整合的前提下,将从DisGeNET中得到的疾病靶点以基因疾病关联评分(gene-disease association score)以及GeneCards中得到的疾病靶点以相关性评分(relevance score)的为标准筛选,剔除相关性较小的疾病靶点,并将三个疾病数据库疾病靶点整合后去除重复值,得到IS疾病靶点。

2.3. 绘制VENN图和PPI图

利用VENNY2.1 (https://bioinfogp.cnb.csic.es/tools/venny/index.html)在线绘图工具制作药物与疾病靶点VENN图。将交集靶点导入STRING在线分析平台(https://cn.string-db.org/),物种选择为“Homo sapiens”绘制蛋白质互作(protein-protein interaction, PPI)图,最低置信度(minimum confidence)设置为0.4,隐藏网络中的离散点,并将STRING数据导入Cytoscape3.9.1软件用“CytoNCA”的插件筛选出淡豆豉防治IS的关键靶点。

2.4. GO和KEGG代谢途径富集分析

将交集靶点导入DAVID 2021 (https://david.ncifcrf.gov/home.jsp)数据库分析靶基因的功能(Gene ontology, GO),包括生物过程(Biological process, BP),细胞组成(Cellular component, CC)和分子功能(Molecular function, MF),以及KEGG (Kyoto encyclopedia of genes and genomes)代谢途径富集分析 [12] ,并用微生信(https://www.bioinformatics.com.cn/)在线作图工具绘制可视化图形,获得淡豆豉作用于IS的信号通路及生物过程。

3. 结果

3.1. 淡豆豉相关成分的筛选

TCMSP数据库筛选淡豆豉已知成分,设定OB ≥ 20%、DL ≥ 0.12为筛选阈值,得到5个符合条件的活性成分(表1),药物靶点剔除重复靶点后得到34个药物靶点,即图1所示。

Table 1. Active ingredients and target number of Sojae Semen Praeparatum

表1. 淡豆豉活性成分及靶点数

Figure 1. Network diagram of active component-target of Sojae Semen Praeparatum

图1. 淡豆豉活性成分–靶点网络图

3.2. 淡豆豉与动脉粥样硬化交集靶点的筛选

检索OMIM、DisGeNET和GeneCards数据库获得IS疾病相关靶点,整合去重后获得1344个靶点,利用VENNY2.1在线绘图工具获取IS靶点与淡豆豉药物靶点的交集,即图2所示的淡豆豉治疗IS的22个预测靶点。

Figure 2. Drug targets of Sojae Semen Praeparatum and intersection targets of ischemic stroke

图2. 淡豆豉药物靶点与缺血性卒中交集靶点

3.3. “淡豆豉-IS-交集靶点”网络构建

将获得的22个交集靶点导入STRING数据库,物种选择“Homo sapiens”,得到PPI图(见图3),设置minimum required interaction score为0.4,显示查询蛋白质名称,隐藏网络中断开连接的节点。网络统计得到number of nodes = 22、number of edges = 47、average node degree = 4.27、avg. local clustering coefficient = 0.479、expected number of edges = 12。将得到的网络数据导入Cytoscape3.9.1软件并用“CytoNCA”的插件建立PPI网络,选择介数中心度前十的靶点作为淡豆豉防治IS的关键靶点,包括PPARG、PTGS2、ESR1等。(见图4)

Figure 3. Protein interaction diagram for “Sojae Semen Praeparatum-IS-intersection target”

图3. “淡豆豉-IS-交集靶点”蛋白互作图

Figure 4. Top ten target protein interaction diagram

图4. 前十靶点蛋白互作图

3.4. GO和KEGG代谢途径富集分析

22个交集靶点导入DAVID 2021数据库后,GO分析得到90个生物过程(BP)、27个细胞组成(CC)和45个分子功能(MF)结果,选择count数前10的结果通过微生信进行富集分析(图5~7)。其中,关键BP包括药物反应、基因表达的正调控、RNA聚合酶II启动子转录的正调控、信号传导等。CC主要包括细胞核、细胞质、细胞外空隙和核质等。MF包括蛋白结合、酶结合、金属离子结合、相同的蛋白结合、受体结合等。KEGG分析得到18个结果,count数前10的通路有癌症途径、神经退行性病变的途径–多种疾病、血清素能突触、催乳素信号通路、IL-17信号通路、多巴胺能突触等(见图8)。

Figure 5. GO BP results plot

图5. GO BP结果图

Figure 6. GO CC results plot

图6. GO CC结果图

Figure 7. GO MF results plot

图7. GO MF结果图

Figure 8. KEGG results plot

图8. KEGG结果图

4. 讨论与结论

经过筛选得到的淡豆豉有效活性成分为甘氨酸、橄榄苦苷、黄豆黄素、异黄酮。有研究表明,黄酮类化合物可通过血脑屏障增加神经保护活性,从而有效治疗缺血性卒中 [13] 。Mnafgui [14] 等发现橄榄苦苷通过其抗氧化和抗血栓形成活性提供对缺血性中风的神经保护作用。因此推测淡豆豉对缺血性卒中有一定的治疗效果。

通过PPI网络及拓扑参数分析筛选出淡豆豉治疗IS的前十个关键靶点,其中雌激素对心血管系统有保护作用,可以保护年轻女性免受心血管疾病的侵害 [15] [16] 。雌激素通过下调炎症标志物(如趋化因子和细胞粘附分子)来对抗动脉粥样硬化,从而降低心血管疾病的风险 [17] 。此外,高浓度雌激素通过产生前列环素、抑制内皮素合成和阻断钙通道来促进血管舒张 [18] 。有研究发现,ESR1基因的多态性与卒中风险增加相关联,尤其是缺血性卒中 [19] 。PPARG是对抗动脉粥样硬化发病机制的保护因子,可能有保护内皮,调节脂肪细胞分化和脂代谢,抑制平滑肌细胞增殖和迁移,降低炎症趋化因子和稳定斑块的功能 [20] 。研究表明,PPARG基因的多态性与脑梗死相关,是缺血性卒中的危险因素 [21] 。GSK3是一种丝氨酸/苏氨酸激酶,包含两种不同的亚型GSK3A和GSK3B,高度富集在哺乳动物大脑中,参与多种细胞和神经生理功能 [22] 。GSK3介导的底物磷酸化和信号通路失调已经被证实和多种疾病有关,如癌症、心血管疾病、糖尿病、炎症性疾病、神经退行性疾病和精神疾病等 [23] 。抑制GSK3作为关键治疗靶点之一受到广泛关注,GSK3B已深度参与脑缺血性损伤引起的神经元细胞死亡 [24] 。

交集靶点的GO和KEGG富集分析显示主要生物过程有对药物的反应、基因表达的正向调控、RNA聚合酶II启动子转录的正向调节、信号转导、对异生刺激的反应、基因表达的负调控、RNA聚合酶II启动子转录的调控、RNA聚合酶II启动子转录的负调节等;分子功能主要为蛋白质结合、酶结合、金属离子结合、锌离子结合、相同的蛋白质结合、受体结合、蛋白质均二聚活性、RNA聚合酶II核心启动子近端区域序列特异性DNA结合、脱氧核糖核酸结合;信号通路主要包括癌症的通路、神经退行性变的途径–多种疾病、血清素能突触、催乳素信号通路、IL-17信号通路、多巴胺能突触、阿尔茨海默病、脂肪细胞脂肪分解的调节。IL-17家族蛋白,特别是IL-17A,广泛参与各种急性和慢性炎症反应,脑卒中后,IL-17A和IL-17F通过诱导炎症因子(如TNF-α、IL-6、CXCL1等)的分泌,招募中性粒细胞渗入中枢神经系统,损害血脑屏障的完整性,促进脑卒中的发展 [25] 。研究证明,异黄酮可以通过抗氧化应激,抗神经毒物性物质损伤,促进神经营养因子表达,保护血脑屏障,降低炎性反应 [26] 。缺血性卒中前痴呆是卒中后死亡的独立预测指标。与既往血管痴呆患者相比,既往患有阿尔茨海默病和混合痴呆的患者,卒中后的死亡率可能更高 [27] 。流行病学研究显示,老年癌症患者的脑卒中发病率增加,但年轻脑卒中患者的死亡率更高 [28] 。

综上所述,本文通过网络药理学方法,筛选出淡豆豉防治缺血性卒中的有效成分、关键靶点和信号通路,预测淡豆豉可能通过作用于ESR1、PPARG、GSK3B等关键靶点和IL-17信号通路以及其他疾病,进而发挥治疗缺血性卒中的作用。研究结果体现了中药多成分–多靶点–多途径的作用特点,为阐明淡豆豉防治缺血性脑卒中提供了新的见解。

基金项目

2021年贵州省研究生科研基金项目(黔教合YJSKYJJ [2021] 173);贵州中医药大学2018年度学术新苗培养及创新探索专项项目(黔科合平台人才[2017] 5735号-15)。

NOTES

*通讯作者。

参考文献

[1] GBD 2019 Stroke Collaborators (2021) Global, Regional, and National Burden of Stroke and Its Risk Factors, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20, 795-820.
https://doi.org/10.1016/S1474-4422(21)00252-0
[2] DeMars, K.M., McCrea, A.O., Yang, C., et al. (2017) Abstract TP274: Activation of the Prostaglandin E2 Receptor EP4 Reduces Blood-Brain Barrier Damage in a Rat Model of Ischemic Stroke. Stroke, 48, Article No. ATP274.
https://doi.org/10.1161/str.48.suppl_1.tp274
[3] Jayaraj, R.L., Azimullah, S., Beiram, R., Jalal, F.Y. and Rosenberg, G.A. (2019) Neuroinflammation: Friend and Foe for Ischemic Stroke. Journal of Neuroinflammation, 16, Article No. 142.
https://doi.org/10.1186/s12974-019-1516-2
[4] Feske, S.K. (2021) Ischemic Stroke. The American Journal of Medicine, 134, 1457-1464.
https://doi.org/10.1016/j.amjmed.2021.07.027
[5] 关水清, 周改莲, 周媛, 等. 淡豆豉的本草考证及现代研究概况[J]. 中药材, 2020, 43(9): 2296-2303.
[6] (梁)陶弘景, 撰, 尚志钧, 辑校. 名医别录[M]. 北京: 人民卫生出版社, 1986.
[7] 周秋丽, 王涛, 王本祥. 现代中药基础研究与临床[M]. 天津: 天津科技翻译出版社, 2012.
[8] Ru, J., Li, P., Wang, J., et al. (2014) TCMSP: A Database of Systems Pharmacology for Drug Discovery from Herbal Medicines. Journal of Cheminformatics, 6, Article No. 13.
https://doi.org/10.1186/1758-2946-6-13
[9] The UniProt Consortium (2020) UniProt: The Universal Protein Knowledgebase in 2021. Nucleic Acids Research, 49, D480-D489. https://academic.oup.com/nar/article/49/D1/D480/6006196?login=false
[10] Piñero, J., Saüch, J., Sanz, F. and Furlong, L.I. (2021) The DisGeNET Cytoscape App: Exploring and Visualizing Disease Genomics Data. Computational and Structural Biotechnology Journal, 19, 2960-2967.
https://doi.org/10.1016/j.csbj.2021.05.015
[11] Safran, M., Rosen, N., Twik, M., et al. (2021) The GeneCards Suite. In: Abugessaisa, I. and Kasukawa, T., Eds., Practical Guide to Life Science Databases, Springer, Singapore, 27-56.
https://doi.org/10.1007/978-981-16-5812-9_2
[12] Sherman, B.T., Hao, M., Qiu, J., et al. (2022) DAVID: A Web Server for Functional Enrichment Analysis and Functional Annotation of Gene Lists (2021 update). Nucleic Acids Research, 50, W216-W221.
https://doi.org/10.1093/nar/gkac194
[13] Paul, A.L. (2012) A Series of Novel Neuroprotective Blood Brain Barrier Penetrating Flavonoid Drugs to Treat Acute Ischemic Stroke. Current Pharmaceutical Design, 18, 3694-3703.
https://doi.org/10.2174/138161212802002652
[14] Mnafgui, K., Ghazouani, L., Hajji, R., et al. (2021) Oleu-ropein Protects Against Cerebral Ischemia Injury in Rats: Molecular Docking, Biochemical and Histological Findings. Neurochemical Research, 46, 2131-2142.
https://doi.org/10.1007/s11064-021-03351-9
[15] Clegg, D., Hevener, A.L., Moreau, K.L., et al. (2017) Sex Hormones and Cardiometabolic Health: Role of Estrogen and Estrogen Receptors. Endocrinology, 158, 1095-1105.
https://doi.org/10.1210/en.2016-1677
[16] Iorga, A., Cunningham, C.M., Moazeni, S., et al. (2017) The Protective Role of Estrogen and Estrogen Receptors in Cardiovascular Disease and the Controversial Use of Estrogen Therapy. Biology of Sex Differences, 8, Article No. 33.
https://doi.org/10.1186/s13293-017-0152-8
[17] Pelekanou, V., Kampa, M., Kiagiadaki, F., et al. (2016) Estrogen Anti-Inflammatory Activity on Human Monocytes Is Mediated through Cross-Talk between Estrogen Receptor ERα36 and GPR30/GPER1. Journal of Leukocyte Biology, 99, 333-347.
https://doi.org/10.1189/jlb.3A0914-430RR
[18] Somani, Y.B., Pawelczyk, J.A., De Souza, M.J., Kris-Etherton, P.M. and Proctor, D.N. (2019) Aging Women and Their Endothelium: Probing the Relative Role of Estrogen on Vasodilator Function. American Journal of Physiology-Heart and Circulatory Physiology, 317, H395-H404.
https://doi.org/10.1152/ajpheart.00430.2018
[19] Fu, R., Shen, Y. and Zheng, J. (2019) Association between Common Genetic Variants in ESR1 and Stroke Risk: A Systematic Review and Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 28, Article ID: 104355.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.104355
[20] Verrier, E., Wang, L., Wadham, C., et al. (2004) PPARγ Agonists Ameliorate Endothelial Cell Activation via Inhibition of Diacylglycerol—Protein Kinase C Signaling Pathway. Circulation Research, 94, 1515-1522.
https://doi.org/10.1161/01.RES.0000130527.92537.06
[21] Hsieh, F.-I., Lo, W.-C., Lin, H.-J., et al. (2009) Significant Synergistic Effect of Peroxisome Proliferator–Activated Receptor γ C-2821T and Diabetes on the Risk of Ischemic Stroke. Diabetes Care, 32, 2033-2035.
https://doi.org/10.2337/dc09-0717
[22] Jope, R.S., Yuskaitis, C.J. and Beurel, E. (2007) Glycogen Synthase Kinase-3 (GSK3): Inflammation, Diseases, and Therapeutics. Neurochemical Research, 32, 577-595.
https://doi.org/10.1007/s11064-006-9128-5
[23] Beurel, E., Grieco, S.F. and Jope, R.S. (2015) Glycogen Synthase Kinase-3 (GSK3): Regulation, Actions, and Diseases. Pharmacology & Therapeutics, 148, 114-131.
https://doi.org/10.1016/j.pharmthera.2014.11.016
[24] Chuang, D.M., Wang, Z. and Chiu, C.-T. (2011) GSK-3 as a Target for Lithium-Induced Neuroprotection against Excitotoxicity in Neuronal Cultures and Animal Models of Ischemic Stroke. Frontiers in Molecular Neuroscience, 4, Article 15.
https://doi.org/10.3389/fnmol.2011.00015
[25] Zhang, Q., Liao, Y., Liu, Z., et al. (2021) Interleukin-17 and Ischaemic Stroke. Immunology, 162, 179-193.
https://doi.org/10.1111/imm.13265
[26] 李硕, 王建. 大豆异黄酮临床应用的研究进展[J]. 大豆科学, 2020, 39(4): 633-640.
[27] Zupanic, E., von Euler, M., Winblad, B., et al. (2021) Mortality after Ischemic Stroke in Patients with Alzheimer’s Disease Dementia and Other Dementia Disorders. Journal of Alzheimer’s Disease, 81, 1253-1261.
https://doi.org/10.3233/JAD-201459
[28] Zaorsky, N.G., Zhang, Y., Tchelebi, L.T., et al. (2019) Stroke among Cancer Patients. Nature Communications, 10, Article No. 5172.
https://doi.org/10.1038/s41467-019-13120-6