一类奇数阶泛函微分方程周期解的存在性
Existence of Periodic Solutions for a Class of Odd Order Functional Differential Equations
DOI: 10.12677/PM.2023.132038, PDF, HTML, XML, 下载: 180  浏览: 348  科研立项经费支持
作者: 林梦媛, 吴 进, 陈柏立*:广东工业大学数学与统计学院,广东 广州
关键词: 奇数阶泛函微分方程周期解Mawhin延拓定理Odd Order Functional Differential Equations Periodic Solutions Mawhin’s Continuation Theorem
摘要: 本文运用Mawhin延拓定理,研究了一类奇数阶泛函微分方程周期解的存在性问题,得到了新的判定准则。
Abstract: Using Mawhin’s continuation theorem we study the existence of periodic solutions for a class of odd order functional differential equations, and establish a new criterion.
文章引用:林梦媛, 吴进, 陈柏立. 一类奇数阶泛函微分方程周期解的存在性[J]. 理论数学, 2023, 13(2): 345-353. https://doi.org/10.12677/PM.2023.132038

1. 引言

由于泛函微分方程在许多数学模型中有着深刻的应用,因此吸引了国内外大量的学者进行研究 [1] [2] 。其中,周期解问题一直得到学者们的关注,但大部分都只是利用不动点理论、重合度理论或者临界点理论等等讨论了低阶的泛函微分方程 [3] - [15] ,涉及到高阶的却不多 [16] [17] [18] 。

本文将利用Mawhin延拓定理讨论一类奇数阶泛函微分方程

x ( 2 n + 1 ) ( t ) + i = 0 2 n 1 a i ( t ) x ( i ) ( t ) + g ( x ( t τ ( t ) ) ) = p ( t ) (1)

周期解的存在性,其中 τ ( t ) a i ( t ) ( i = 0 , 1 , 2 , , n ) p ( t ) 都是定义在R上具有正周期T的实连续函数。并且 a 0 ( t ) > 0 a 2 k 1 ( t ) > 0 ( k = 1 , 2 , , n ) g ( x ) 是定义在R上的实连续函数。

在第二节中,我们先给出一些预备知识,以及针对周期解存在性的条件做假设。在第三节中,我们将利用Mawhin延拓定理 [19] ,证明方程(1)的周期解存在性。

2. 预备知识

为了证明主要结果,我们需要介绍Mawhin延拓定理 [19] 。

令X和Y是两个Banach空间,且 L : D o m L X Y 是一个线性映射, N : X Y 是一个连续映射。若映射L满足:1) d i m K e r L = c o d i m I m L < + ;2) ImL在Y上是闭的。则称映射 是指标为零的Fredholm算子。若映射L是一个指标为零的Fredholm算子,则存在连续的投影算子 P : X X Q : Y Y ,使得 I m P = K e r L I m L = K e r Q = I m ( I Q ) 成立。令 K p 表示 L | D o m L K e r P : ( I P ) X I m L 的逆,若 Q N ( Ω ¯ ) 是有界的且 K p ( I Q ) N ( Ω ¯ ) ¯ 是紧的,则称映射N是 Ω ¯ 上L-紧的,其中 Ω 是X上的有界开子集。

引理2.1 ( 延拓定理) [19] 令L是一个具有零指标的Fredholm算子,N是一个在 Ω ¯ 上L-紧的非线性算子。如果

1) 对每个 λ ( 0 , 1 ) x Ω , L x λ N x

2) 对每个 x Ω K e r L , Q N x 0 deg ( Q N , Ω K e r L , 0 ) 0

则方程 L x = N x Ω ¯ D o m L 上至少有一个解。

在呈现我们主要结果之前,先作出如下假设:

(H1): M 2 k 1 = max t [ 0 , T ] a 2 k 1 ( t ) a 2 k 1 ( t ) m 2 k 1 = min t [ 0 , T ] a 2 k 1 ( t ) > 0 ( k = 1 , 2 , , n )

(H2): M 2 k 2 = max t [ 0 , T ] | a 2 k 2 ( t ) | ( k = 2 , , n 1 ) , M 0 = max t [ 0 , T ] a 0 ( t ) a 0 ( t ) m 0 = min t [ 0 , T ] a 0 ( t ) > 0

(H3): M 2 n 1 < ( π T ) 2 , M 2 n 2 i + 1 M 2 n 2 i 1 < ( π T ) 2 ( i = 2 , 3 , , n )

(H4):存在正常数r使得 m 0 r 2 > T δ M 0 2 T δ M 0 + M 1 ,且 A D B > 0 1 A * > 0 。其中 δ = e M 0 M 1 T / e M 0 M 1 T 1 A = 1 A *

A * = M 2 n 1 ( T 2 ) 2 + M 2 n 2 ( T 2 ) 3 + + M 1 ( T 2 ) 2 n ,

B = ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ,

D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 ) .

3. 主要结果的证明

定理3.1 若假设(H1)~(H4)成立,且满足

lim | x | sup | g ( x ) x | r , (2)

lim | x | sgn ( x ) g ( x ) = + , (3)

则方程(1)至少存在一个T周期解。

为了证明定理3.1,我们要做如下准备工作。令

X : = { x | x C 2 n ( R , R ) , x ( t + T ) = x ( t ) , t R } ,

x ( 0 ) ( t ) = x ( t ) ,并在空间X上定义如下范数:

x = max 0 j 2 n max t [ 0 , T ] | x ( 2 n ) ( t ) | .

类似地,令 Y : = { y | y C ( R , R ) , y ( t + T ) = y ( t ) , t R } ,在空间Y上定义如下范数:

y 0 = max t [ 0 , T ] | y ( t ) | .

显然, ( X , ) ( Y , 0 ) 都是Banach空间。

分别定义算子 L : X Y N : X Y ,如下

L x ( t ) = x ( 2 n + 1 ) ( t ) , t R ; N x ( t ) = p ( t ) i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) , t R . (4)

易知算子L是一个指标为零的Fredholm算子,再定义投影算子P、Q分别为

P x ( t ) = x ( 0 ) = x ( T ) , t R , x X ; Q y ( t ) = 1 T 0 T y ( s ) d s , t R , y Y . (5)

容易验证,算子N是一个在 Ω ¯ 上是L-紧的非线性算子。

考虑如下的辅助方程

x ( 2 n + 1 ) ( t ) + λ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) + λ g ( x ( t τ ( t ) ) ) = λ p ( t ) , (6)

其中 0 < λ < 1

引理3.2 [20] 令 x ( t ) C n ( R , R ) C T ,则

x ( i ) 1 2 0 T | x ( i + 1 ) ( s ) | d s , i = 1 , 2 , , n 1.

其中 n 2 ,且 C T : = { x | x C ( R , R ) , x ( t + T ) = x ( t ) , t R }

引理3.3 [21] 设M,λ是两个正数,且满足 0 < M < ( π T ) 2 0 < λ < 1 ,则对任意的函数 φ ( t ) ( t [ 0 , T ] ) ,方程

{ x ( t ) + λ M x ( t ) = λ φ ( t ) x ( 0 ) = x ( T ) , x ( 0 ) = x ( T )

有唯一解,其表达形式如下:

x ( t ) = 0 T G ( t , s ) λ φ ( s ) d s ,

其中, α = λ M

G ( t , s ) = { ω ( t s ) , ( k 1 ) T s t k T , ω ( T + t s ) , ( k 1 ) T t s k T ( k N ) .

ω ( t ) = cos α ( t T 2 ) 2 α sin α T 2 .

引理3.4 若定理3.1中的条件被满足,且 x ( t ) 是方程(6)的一个T周期解,则存在独立于λ的常数 D i ( i = 0 , 1 , , 2 n ) ,使得

x ( i ) D i , t [ 0 , T ] , i = 0 , 1 , , 2 n . (7)

证明:设 x ( t ) 是方程(6)的一个T周期解。令

ε = m 0 r 2 T δ M 0 2 T δ M 0 + M 1 .

由(2)知,存在一个正常数 M ¯ 1 > 0 ,使得

| g ( x ( t ) ) | r | x ( t ) | , | x ( t ) | > M ¯ 1 , t R . (8)

E 1 = { t | t [ 0 , T ] , | x ( t ) | M ¯ 1 } , E 2 = [ 0 , T ] \ E 1 . (9)

ρ = max E 2 g ( x ) . (10)

由(6)、(8)、(9)和(10)式和引理3.2,有

x ( 2 n ) 0 1 2 0 T | x ( 2 n + 1 ) ( t ) | d t λ 2 0 T [ | i = 0 2 n 1 a i ( t ) x ( i ) ( t ) | + | g ( x ( t τ ( t ) ) ) | + | p ( t ) | ] d t λ T 2 [ M 2 n 1 x ( 2 n 1 ) 0 + M 2 n 2 x ( 2 n 2 ) 0 + + M 0 x ( 0 ) 0 ] + λ 2 0 T | g ( x ( t τ ( t ) ) ) | d t + λ T 2 p 0

T 2 [ M 2 n 1 T 2 + M 2 n 2 ( T 2 ) 2 + + M 1 ( T 2 ) 2 n 1 ] x ( 2 n ) 0 + T 2 M 0 x 0 + 1 2 [ E 1 | g ( x ( t τ ( t ) ) ) | d t + E 2 | g ( x ( t τ ( t ) ) ) | d t ] + T 2 p 0 A * x ( 2 n ) 0 + T 2 ( M 0 + r + ε ) x 0 + T 2 ( ρ + p 0 ) = A * x ( 2 n ) 0 + m 0 r 2 D x 0 + T 2 C . (11)

其中, C = ρ + p 0 , D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 )

由假设(H4)和(11)式,有

x ( 2 n ) 0 ( 1 A * ) 1 ( m 0 r 2 D x 0 + T 2 C ) . (12)

由(6)式和引理3.3,得

x ( 2 n 1 ) ( t ) = λ 0 T G 1 ( t , t 1 ) [ ( M 2 n 1 a 2 n 1 ( t 1 ) ) x ( 2 n 1 ) ( t 1 ) + p ( t 1 ) g ( x ( t 1 τ ( t 1 ) ) ) ] d t 1 λ 0 T G 1 ( t , t 1 ) i = 0 2 n 2 a i ( t 1 ) x ( i ) ( t 1 ) d t 1 , (13)

其中, α 1 = λ M 2 n 1

G 1 ( t , t 1 ) = { ω 1 ( t t 1 ) , ( k 1 ) T t 1 t k T , ω 1 ( T + t t 1 ) , ( k 1 ) T t t 1 k T ( k N ) .

ω 1 ( t ) = cos α 1 ( t T 2 ) 2 α 1 sin α 1 T 2 , 0 T G 1 ( t , t 1 ) d t 1 = 1 λ M 2 n 1 .

由(13)式和引理3.3,得

x ( 2 n 3 ) ( t ) = λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) [ p ( t 2 ) g ( x ( t 2 τ ( t 2 ) ) ) ] d t 2 d t 1 + λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) ( M 2 n 1 a 2 n 1 ( t 2 ) ) x ( 2 n 1 ) ( t 2 ) d t 2 d t 1 + λ 0 T G 2 ( t , t 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t 1 ) λ 0 T G 1 ( t 1 , t 2 ) a 2 n 3 ( t 2 ) x ( 2 n 3 ) ( t 2 ) d t 2 ] d t 1 λ 0 T G 2 ( t , t 1 ) 0 T G 1 ( t 1 , t 2 ) [ i = 0 2 n 4 a i ( t 2 ) x ( i ) ( t 2 ) + a 2 n 2 ( t 2 ) x ( 2 n 2 ) ( t 2 ) ] d t 2 d t 1 , (14)

其中, α 2 = M 2 n 1 M 2 n 3

G 2 ( t , t 2 ) = { ω 2 ( t t 2 ) , ( k 1 ) T t 2 t k T , ω 2 ( T + t t 2 ) , ( k 1 ) T t t 2 k T ( k N ) .

ω 2 ( t ) = cos α 2 ( t T 2 ) 2 α 2 sin α 2 T 2 , 0 T G 2 ( t , t 2 ) d t 2 = M 2 n 1 M 2 n 3 .

利用数学归纳法,可以得到

x ( t ) = λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1 + 0 T G n ( t , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1

+ 0 T G n ( t , t 1 ) 0 T G 3 ( t n 3 , t n 2 ) [ M 2 n 5 M 2 n 3 x ( 2 n 5 ) ( t n 2 ) λ 0 T G 2 ( t n 2 , t n 1 ) 0 T G 1 ( t n 1 , t n ) a 2 n 5 ( t n ) x ( 2 n 5 ) ( t n ) d t n d t n 1 ] d t n 2 d t 1 + + + 0 T G n ( t , t 1 ) [ M 1 M 3 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 λ 0 T G n ( t , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 . (15)

其中, α i = M 2 n 2 i + 1 M 2 n 2 i + 3 , 2 i n

G i ( t , t 1 ) = { ω i ( t t i ) , ( k 1 ) T t i t k T , ω i ( T + t t i ) , ( k 1 ) T t t i k T ( k N ) .

ω i ( t ) = cos α i ( t T 2 ) 2 α i sin α i T 2 , 0 T G i ( t , t i ) d t i = M 2 n 2 i + 3 M 2 n 2 i + 1 , 2 i n .

再根据(15)式和常数变易法,

x ( t ) = ( e M 0 M 1 T 1 ) 0 t Φ ( t , s ) { λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1 + 0 T G n ( s , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1 + +

+ 0 T G n ( s , t 1 ) [ M 1 M 3 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 } d s + ( e M 0 M 1 T 1 ) o t Φ ( t , s ) { M 0 M 1 x ( s ) λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 } d s + 0 T Φ ( t , s ) { λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ p ( t n ) g ( x ( t n τ ( t n ) ) ) ] d t n d t 1 + λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) ( M 2 n 1 a 2 n 1 ( t n ) ) x ( 2 n 1 ) ( t n ) d t n d t 1

+ 0 T G n ( s , t 1 ) 0 T G 2 ( t n 2 , t n 1 ) [ M 2 n 3 M 2 n 1 x ( 2 n 3 ) ( t n 1 ) λ 0 T G 1 ( t n 1 , t n ) a 2 n 3 ( t n ) x ( 2 n 3 ) ( t n ) d t n ] d t n 1 d t 1 + + + 0 T G n ( s , t 1 ) [ M 3 M 1 x ( 1 ) ( t 1 ) λ 0 T G n 1 ( t 1 , t 2 ) 0 T G n 2 ( t 2 , t 3 ) 0 T G 1 ( t n 1 , t n ) a 1 ( t n ) x ( 1 ) ( t n ) d t n d t 2 ] d t 1 λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ k = 1 n 1 a 2 k ( t n ) x ( 2 k ) ( t n ) ] d t n d t 1 } d s + 0 T Φ ( t , s ) { M 0 M 1 x ( s ) λ 0 T G n ( s , t 1 ) 0 T G 1 ( t n 1 , t n ) [ a 0 ( t n ) x ( 0 ) ( t n ) ] d t n d t 1 } d s . (16)

其中

Φ ( t , s ) = e M 0 M 1 ( s t ) e M 0 M 1 T 1 , Φ ( t , s ) Φ ( t , t + T ) = e M 0 M 1 T e M 0 M 1 T 1 = δ ,

0 t Φ ( t , s ) d s = M 1 ( 1 e M 0 M 1 T ) M 0 ( e M 0 M 1 T 1 ) M 1 M 0 ( e M 0 M 1 T 1 ) .

由(8)、(9)、(10)、(16)式和引理3.2,得

x 0 ( 1 M 0 + T δ M 1 ) { p 0 + ρ + [ M 0 m 0 + ( r + ε ) ] x 0 + [ ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + ( M 2 n 3 m 2 n 3 ) ( T 2 ) 3 + M 2 n 4 ( T 2 ) 4 + + ( M 3 m 3 ) ( T 2 ) 2 n 3 + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ] x ( 2 n ) 0 } , (17)

经化简后,有

M 0 M 1 T δ M 0 + M 1 x 0 ( M 0 m 0 + r + ε ) x 0 p 0 + ρ + [ ( M 2 n 1 m 2 n 1 ) ( T 2 ) + M 2 n 2 ( T 2 ) 2 + ( M 2 n 3 m 2 n 3 ) ( T 2 ) 3 + + M 2 ( T 2 ) 2 n 2 + ( M 1 m 1 ) ( T 2 ) 2 n 1 ] x ( 2 n ) 0 , (18)

因此,根据假设(H4)、(18)式和ε的取值,可得

x 0 2 ( B x ( 2 n ) 0 + C ) m 0 r . (19)

结合(12)式和(19)式,得

( 1 A * ) x ( 2 n ) 0 D ( B x ( 2 n ) 0 + C ) + T C 2 , (20)

因此有

( A D B ) x ( 2 n ) 0 D C + T C 2 , (21)

其中, C = ρ + p 0 , D = T m 0 r ( M 0 M 1 T δ M 0 + M 1 + m 0 + r 2 ) .

再由假设(H4)和(21)式,得到

x ( 2 n ) 0 D C + T C / 2 A D B = D 2 n . (22)

联立(19)和(22)式,得

x 0 2 ( B D 2 n + C ) m 0 r = D 0 . (23)

最后,由(22)、(23)式和引理3.2,得到

x ( i ) 0 D i , ( 0 i 2 n ) .

引理3.4得证。

定理3.1的证明:设 x ( t ) 是方程(6)的一个T周期解。由引理3.4知,存在独立于λ的常数 D i ( i = 0 , 1 , , 2 n ) ,使得(7)式成立。由(3)式知,存在正常数 M 2 > 0 ,使得

sgn ( x ) g ( x ) > 0 , | x ( t ) | > M 2 , t R . (24)

取一正常数 D ¯ > max 0 i 2 n { D i } + M 2 ,令

Ω : = { x X | x < D ¯ } .

此时 是指标为零的Fredholm算子,N是在 Ω ¯ 上L-紧的非线性算子。对任意有界的周期解 x ( t ) ,当 x Ω D o m L λ ( 0 , 1 ) 时,有 L x λ N x

x Ω K e r L 时,有 x = D ¯ x = D ¯ ,再结合(3)和(5)式可得

x ( i ) ( t ) = 0 , i = 1 , 2 , , n 1 , 1 T 0 T [ i = 0 2 n 1 a 0 ( t ) D ¯ + g ( D ¯ ) p ( t ) ] d t < 0 , 1 T 0 T [ i = 0 2 n 1 a 0 ( t ) D ¯ g ( D ¯ ) + p ( t ) ] d t > 0. (25)

然后由上式可知,当 x Ω K e r L 时,有

Q N x = 1 T 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t 0. (26)

故对任意的 x Ω K e r L η ( 0 , 1 ) ,有

x H ( x , η ) = η x 2 + x T ( 1 η ) 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t 0. (27)

因此, H ( x , η ) 是一个同伦映射。进而有

deg ( Q N , Ω K e r L , 0 ) = deg { 1 T 0 T [ i = 0 2 n 1 a i ( t ) x ( i ) ( t ) g ( x ( t τ ( t ) ) ) + p ( t ) ] d t , Ω K e r L , 0 } = deg ( x , Ω K e r L , 0 ) 0. (28)

根据引理2.1可知,方程 L x = N x Ω ¯ D o m L 上至少存在一个解。因此,方程(1)至少存在一个 周期解。定理3.1得证。

基金项目

广东省自然科学基金资助项目(2018A030313871)。

NOTES

*通讯作者。

参考文献

[1] Hale, J.K. and Lunel, S.M.V. (2013) Introduction to Functional Differential Equations. Springer Science & Business Media, Berlin.
[2] Kuang, Y. (1990) Global Stability of Gause-Type Predator-Prey Systems. Journal of Mathematical Biology, 28, 463-474.
https://doi.org/10.1007/BF00178329
[3] Candan, T. (2016) Existence of Positive Periodic Solutions of First Order Neutral Differential Equations with Variable Coefficients. Applied Mathematics Letters, 52, 142-148.
https://doi.org/10.1016/j.aml.2015.08.014
[4] Fan, M. and Wang, K. (2001) Periodicity in a Delayed Ratio-Dependent Predator-Prey System. Journal of Mathematical Analysis and Applications, 262, 179-190.
https://doi.org/10.1006/jmaa.2001.7555
[5] Guo, Z. and Yu, J. (2005) Multiplicity Results for Periodic Solutions to Delay Differential Equations via Critical Point Theory. Journal of Differential Equations, 218, 15-35.
https://doi.org/10.1016/j.jde.2005.08.007
[6] Guo, Z. and Yu, J. (2003) The Existence of Periodic and Subharmonic Solutions of Subquadratic Second Order Difference Equations. Journal of the London Mathematical So-ciety, 68, 419-430.
https://doi.org/10.1112/S0024610703004563
[7] Lu, S. and Ge, W. (2004) Some New Results on the Existence of Periodic Solutions to a Kind of Rayleigh Equation with a Deviating Argument. Nonlinear Analysis: Theory, Methods & Applications, 56, 501-514.
https://doi.org/10.1016/j.na.2003.09.021
[8] Lu, S. and Yu, X. (2020) Periodic Solutions for Second Order Dif-ferential Equations with Indefinite Singularities. Advances in Nonlinear Analysis, 9, 994-1007.
https://doi.org/10.1515/anona-2020-0037
[9] Raffoul, Y.N. (2012) Existence of Positive Periodic Solutions in Neutral Nonlinear Equations with Functional Delay. The Rocky Mountain Journal of Mathematics, 42, 1983-1993.
https://doi.org/10.1216/RMJ-2012-42-6-1983
[10] Wang, W. and Shen, J. (2020) Positive Periodic Solutions for Neutral Functional Differential Equations. Applied Mathematics Letters, 102, Article ID: 106154.
https://doi.org/10.1016/j.aml.2019.106154
[11] Yang, H. and Zhang, L. (2020) Three Positive Periodic Solutions of Second Order Nonlinear Neutral Functional Differential Equations with Delayed Derivative. Advances in Difference Equations, 2020, Article No. 164.
https://doi.org/10.1186/s13662-020-02630-z
[12] Rojas, P.D. and Torres, V.P.J. (2021) Periodic Bouncing Solu-tions of the Lazer-Solimini Equation with Weak Repulsive Singularity. Nonlinear Analysis: Real World Applications, 64, Article ID: 103441.
https://doi.org/10.1016/j.nonrwa.2021.103441
[13] Lomtatidze, A. and Šremr, J. (2021) On Positive Periodic So-lutions to Second-Order Differential Equations with a Sub-Linear Non-Linearity. Nonlinear Analysis: Real World Ap-plications, 57, Article ID: 103200.
https://doi.org/10.1016/j.nonrwa.2020.103200
[14] 丁伟岳. 扭转映射的不动点与常微分方程的周期解[J]. 数学学报, 1982(2): 227-235.
[15] 王根强, 燕居让. 二阶非线性中立型泛函微分方程周期解的存在性[J]. 数学学报: 中文版, 2004, 47(2): 379-384.
[16] Cao, J. and He, G. (2004) Periodic Solutions for Higher-Order Neutral Differential Equations with Several Delays. Computers & Mathematics with Applications, 48, 1491-1503.
https://doi.org/10.1016/j.camwa.2004.07.007
[17] Guo, C., O’Regan, D., Xu, Y., et al. (2009) Existence of Peri-odic Solutions for a Class of Even Order Differential Equations with Deviating Argument. Electronic Journal of Qual-itative Theory of Differential Equations, 2009, Paper No. 12.
https://doi.org/10.14232/ejqtde.2009.4.12
[18] Wang, K. and Lu, S. (2007) On the Existence of Periodic Solutions for a Kind of High-Order Neutral Functional Differential Equation. Journal of Mathematical Analysis and Applications, 326, 1161-1173.
https://doi.org/10.1016/j.jmaa.2006.03.078
[19] Gaines, R.E. and Mawhin, J.L. (2006) Coincidence Degree and Nonlinear Differential Equations. Springer, Berlin.
[20] Li, J. and Wang, G. (2005) Sharp Inequalities for Periodic Functions. Applied Mathematics E-Notes, 5, 75-83.
[21] Shen, J. and Liang, R. (2007) Periodic Solutions for a Kind of Second Order Neutral Functional Differential Equations. Applied Mathematics and Computation, 190, 1394-1401.
https://doi.org/10.1016/j.amc.2007.02.137