卵泡刺激素对绝经后2型糖尿病脂代谢影响的潜在机制研究进展
Research Advances in the Potential Mechanisms of Follicle-Stimulating Hormone Effects on Lipid Metabolism in Postmenopausal Type 2 Diabetes Mellitus
DOI: 10.12677/ACM.2023.134746, PDF, HTML, XML, 下载: 150  浏览: 234  科研立项经费支持
作者: 王 倩*:济宁医学院临床医学院,山东 济宁;卢秀莲:辰欣药业股份有限公司,山东 济宁;刘亚平#:济宁市第一人民医院内分泌与代谢病科,山东 济宁
关键词: 卵泡刺激素2型糖尿病脂代谢心血管疾病Follicle Stimulating Hormone Type 2 Diabetes Mellitus Lipid Metabolism Cardiovascular Disease
摘要: 2型糖尿病(Type 2 diabetes, T2DM)合并脂代谢紊乱是导致动脉粥样硬化性大血管病变的重要危险因素,心、脑血管动脉粥样硬化已成为其主要死亡原因。以往综述主要集中在雌激素对女性心血管疾病、动脉粥样硬化、脂代谢等的影响,少有总结卵泡刺激素(Follicle stimulating hormones, FSH)与绝经后血脂异常、心血管疾病风险的相关性。本篇综述结合国内外相关文献,主要目的是强调FSH对绝经后T2DM脂代谢的影响及潜在分子机制,为糖尿病降脂治疗提供新思路。
Abstract: Type 2 diabetes mellitus (T2DM) combined with disorders of lipid metabolism is an important risk factor for atherosclerotic macroangiopathy, and cardiovascular and cerebrovascular atherosclerosis has become its main cause of death. Previous reviews have focused on the effects of estrogen on car-diovascular disease, atherosclerosis, and lipid metabolism in women, and few have summarized the correlation between follicle-stimulating hormones (FSH) and postmenopausal dyslipidemia and cardiovascular disease risk. The main purpose of this review, combined with related domestic and international literature, is to highlight the effects and potential molecular mechanisms of FSH on li-pid metabolism in postmenopausal T2DM, and to provide new ideas for lipid-lowering therapy in diabetes.
文章引用:王倩, 卢秀莲, 刘亚平. 卵泡刺激素对绝经后2型糖尿病脂代谢影响的潜在机制研究进展[J]. 临床医学进展, 2023, 13(4): 5268-5274. https://doi.org/10.12677/ACM.2023.134746

1. 引言

糖尿病(diabetes mellitus, DM)是一种以高血糖为特征的慢性疾病。随着人类社会经济、生活水平的提高及生活方式的改变,DM的患病率急剧增加。据估计2021年全球20~79岁人群DM患病率达10.9%,预计到2045年将上升至12.2%,T2DM占全球糖尿病总数90%以上 [1] 。T2DM及其并发症的发生极大的增加了世界人口死亡率和致残率,对全球健康构成重大威胁。传统上将T2DM并发症分为大血管病变(如心血管疾病(cardiovascular disease, CVD))和微血管病变(如肾脏、视网膜和神经系统疾病),CVD是发病和死亡的主要原因 [2] 。

FSH是参与哺乳动物生殖发育的重要促性腺激素之一,由垂体前叶(腺垂体)促性腺激素细胞(一种嗜碱性细胞)合成后分泌入血 [3] 。研究发现FSH不仅具有调节性腺功能的作用,还会影响体脂、产热、血清胆固醇、骨质疏松及心血管疾病的发生,甚至影响衰老过程 [4] [5] 。本篇综述旨在探讨绝经后血清FSH水平对T2DM患者脂代谢的影响及潜在机制,通过浏览大量国内外相关文献,总结FSH调节脂代谢的信号通路、分子机制,为绝经后T2DM患者降脂治疗提供新思路。

2. 绝经后T2DM并发心血管疾病相关临床研究

2.1. T2DM发生心血管疾病的流行病学调查

在胰岛素抵抗、高血糖和相关代谢异常的综合影响下,T2DM患者更容易患动脉粥样硬化性心脑血管疾病 [6] 。高甘油三酯(triglyceride, TG)-低高密度脂蛋白胆固醇(high density lipoprotein cholesterol, HDL-C)在超重或肥胖T2DM患者中非常普遍(40%),与CVD风险呈正相关。较高的低密度脂蛋白胆固醇(low density lipoprotein cholesterol, LDL-C)是公认的CVD危险因素,Kaze等证实高TG合并低HDL-C在T2DM患者CVD风险预测中作用超过高LDL-C [7] [8] 。调整年龄、性别、吸烟情况、体重指数和收缩压等混杂因素后,研究发现T2DM患者发生CVD的可能性是非T2DM患者的两倍,且CVD发病时间通常比非DM患者早14.6年,严重程度也更高。女性DM合并CVD的风险显著高于男性,40~59岁风险高于70岁或70岁以上 [2] [9] 。DM似乎减弱或者抵消了绝经前女性降低的CVD风险。

2.2. 性激素是绝经后T2DM发生心血管疾病的风险因素

性激素与CVD之间的关系已被广泛研究,但是研究结果在性别、年龄之间不尽相同。人们普遍认为雌激素水平降低是绝经后CVD风险显著增加的一个主要原因 [10] 。Zhao等认为血清较高的雌激素水平与CVD风险降低有关,雌激素对心血管系统有保护作用 [11] 。雌激素是脂代谢的重要调因子,通过增加HDL-C,降低LDL-C水平,减少绝经前女性发生CAD的风险。雌激素缺乏会促进胰岛素抵抗、DM、血脂紊乱和高血压的发展 [10] 。早期手术绝经的女性,使用雌激素替代治疗(HRT)可以降低但不能消除CVD风险 [12] 。随着绝经后雌激素水平的下降,女性发生CVD的风险急剧增加,这不仅与雌激素水平降低相关,还与较高的睾酮/雌二醇(T/E2)比值或总睾酮(TT)水平有关 [11] [13] 。与之不同,Wang等发现在T2DM患者中,T/E2比值与男性发生大血管病变风险呈负相关,绝经后女性并没有体现出显著相关性。有CVD病史的男性雌激素、FSH水平较高,绝经后女性雌激素水平与大血管并发症发生的相关性不显著 [6] ,没有表现雌激素预期的心脏保护作用。

越来越多的研究认为CVD的发生与血清FSH水平有关,但它仍然是一个有争议的话题。亚临床动脉粥样硬化在围绝经期女性中普遍存在,颈动脉内膜–中层厚度被认为是动脉粥样硬化早期阶段的标志物,减少颈动脉内膜–中层厚度进展的干预措施可能降低CVD的发生率 [14] 。少数评估FSH和亚临床动脉粥样硬化关系的研究结果一致 [15] [16] 。排除肥胖、雌二醇或性激素结合球蛋白水平的影响,绝经后女性平均内膜–中层膜厚度随着FSH水平的增加而减少,FSH水平与亚临床动脉粥样硬化程度呈显著负相关,在高龄绝经后女性中尤为明显 [15] 。同样,中国对2658名绝经后女性进行的大型多中心研究显示,血清FSH水平与绝经后10年内发生动脉粥样硬化性心血管疾病(atherosclerotic cardiovascular disease, ASCVD)风险呈负相关 [16] 。韩国一项针对608名绝经后女性的回归分析显示,FSH水平与体重指数、体重、腰围、空腹血糖、TG等心脏代谢危险因素呈负相关。低FSH可能是绝经后CVD的危险因素或生物标志物,可作为绝经后女性CVD的预测因子 [15] [17] 。然而其他研究发现血清FSH水平和颈动脉内膜–中层厚度之间存在明显正相关,与中、高FSH组相比,较低的FSH水平低与较低的颈动脉内膜–中层厚度有关,尽管后者具有更高的CVD风险因素 [18] [19] 。

3. FSH与绝经后血脂异常的相关性

末次月经(final menstrual period, FMP)年龄越早,发生CVD的风险越高 [12] 。FMP前3年至FMP后1年总胆固醇(total cholesterol, TC)、LDL-C显著增加,TG也在FMP后3年内升高 [20] 。围绝经期血清雌激素水平下降,FSH水平升高,高FSH是否参与绝经后血脂异常变化?目前对FSH与血脂水平呈正相关还是负相关存在争议。一项前瞻性队列研究结果显示,绝经后FSH与TC、LDL-C之间存在显著正线性关系,其中FSH与LDL-C的正相关性在年轻绝经后女性(53~62岁)中更强。高水平FSH与增加TC、LDL-C升高风险。即使调整雌激素和传统混杂因素,血清FSH水平仍与血清TC和LDL-C水平呈正相关 [21] [22] 。在接受雌激素治疗的400名绝经后女性中,高水平FSH组TC、LDL-C显著高于低水平FSH组,治疗后高FSH组(FSH下降 ≥ 30%)TC、LDL-C水平改善更为显著 [23] 。相反,来自的中国另一项研究发现,随着绝经后FSH水平的升高,女性血脂异常患病率下降,FSH与TG和LDL-C呈负相关 [16] 。较低的FSH水平可能增加血脂异常的几率,尤其是增加LDL-C升高的风险 [24] 。国外的一项回归分析研究显示,FSH水平与HDL-C呈正相关,与TG、TG/HDL-C呈负相关,不受年龄、体重、雌激素的影响 [17] 。

4. FSH调控绝经后脂代谢的分子机制

4.1. FSH概述

FSH、促黄体生成素(LH)、促甲状腺激素(TSH)是由脑垂体合成和分泌的三种糖蛋白激素。其中FSH、LH也被称为促性腺激素。它们的生物合成和分泌过程受同一种下丘脑激素–促性腺激素释放激素(GnRH)的影响 [25] [26] 。FSH包括α和β亚单位,两种多肽单位都是生物活性所必需的。β亚单位具有激素特异性,有特定的生物作用,负责与卵泡刺激素受体(FSHR)相互作用 [27] 。FSH结合FSHR诱导女性卵泡生长,促进雌激素产生,并通过影响支持细胞调节男性精子生成 [19] [28] 。FSHR属于G蛋白偶联受体(GPCR),研究发现其表达不仅限于性腺,破骨细胞、鸡的脂肪组织也检测到FSHR。FSH可以直接调节骨量,人类脂肪累积和再分布也受FSH调控 [5] [29] [30] 。可见血清FSH水平升高与绝经后骨质疏松症、肥胖之间存在很强的相关性。以往的研究着重于性腺FSHR,FSH与性腺FSHR经典作用G蛋白途径是Gαs/cAMP/PKA信号通路 [31] 。FSH影响绝经后脂代谢的潜在独立作用机制目前尚不完全清楚。

4.2. FSH参与绝经后脂质合成

绝经后FSH水平的升高与女性脂肪增加有关 [32] 。动物实验证明FSH通过上调鸡腹部脂肪组织FSHR mRNA的表达,在腹脂累积中起积极作用。生物学分析结果显示,与脂质代谢有关的基因-Rdh 10,Acsl 3,Dci,RarB,AdipoQ,LpL,and Dgat 2表达受FSH影响 [29] 。维甲酸(RA)通过抑制脂肪生成和诱导脂肪酸氧化来控制啮齿动物的肥胖。Rdh10基因完全敲除的胚胎成纤维细胞表现出RA生物合成减少和脂肪生成增加,FSH可能通过增加Rdh10表达激活RA信号通路,增加脂肪合成 [33] [34] 。脂酰辅酶A长链合成酶3 (acyl CoA long chain synthetase 3, ACSL3)能够促进脂滴生物合成与成熟,肿瘤坏死因子-α (tumor necrosis factor-α, TNF-α)增强血管内皮细胞ACSL3的表达,从而影响细胞内脂质代谢 [35] [36] 。动脉粥样硬化是一种动脉壁的慢性炎症性疾病,TNF-α、白介素-1 (interleukin-1, IL-1)、白介素-6 (interleukin-6, IL-6)等促炎症细胞因子都能加速其发生。FSH刺激上述炎症细胞因子的分泌并起到预测作用 [37] [38] [39] 。实验证明核转录因子-κB (nuclear transcription factor-κB, NF-κB)和过氧化物酶体增殖物激活受体(peroxisome proliferator-activated receptor, PPARγ)参与TNF-α诱导的低密度脂蛋白(LDL)跨内皮细胞转运,延长LDL在血管壁的滞留,促进动脉粥样硬化。NF-κB或PPAR-γ抑制剂可有效预防或治疗基于动脉粥样硬化的疾病 [37] 。另外,FSH/FSHR介导的Gαi/Ca2+/CREB途径调节衰老过程中脂肪的积累和分布。在体外,高FSH上调CREB(一种已知影响脂质生物合成和脂肪积累的转录因子)、触发PPARc (促脂基因)、招募其他关键酶来促进衰老期间脂肪累积,导致脂肪细胞的脂质生物合成增加 [30] 。

4.3. FSH引起绝经后血脂异常的潜在机制

肝脏在维持胆固醇动态平衡方面起关键作用。流行病学调查结果认为绝经后血清FSH与TC、TG水平之间关系密切 [16] [21] [23] 。那么FSH是如何调节血脂的合成、转运等代谢过程呢?实验发现人类肝脏组织表达功能性FSHR。绝经后FSHR缺乏会抑制肝脏胆固醇积累,降低血清胆固醇水平 [22] 。Song等研究证明,虽然卵巢切除小鼠有较高的血清FSH和血脂水平,但是肝低密度脂蛋白受体表达下降。FSH可能以剂量和时间依赖的方式结合FSHR,抑制低密度脂蛋白受体在肝脏的表达,减少LDL-C的降解,进而升高LDL-C水平 [23] 。3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase, HMGCR)是胆固醇合成的限速酶,单纯FSH水平升高通过上调HMGCR的表达和活性来诱导胆固醇的生物合成,主要途径是FSH/FSHR介导的Gi2α/β-arrestin2/FoxO1/Akt/SREBP-2信号通路。抗FSH-β抗体可以防止由高FSH或高胆固醇饮食引起的胆固醇增多 [22] 。最近的研究发现,FSH通过激活FSHR/GαS/cAMP/PKA、PI3K/AKT/NF-κB两条途径,或者增强PI3K/Akt/eNOS信号通路活性促进NF-κB核转位,增加血管细胞黏附分子-1蛋白(VCAM-1)的表达 [40] ,为FSH直接作用于血管内皮细胞并改变其功能以促进动脉粥样硬化发展提供实验证据。更加证实绝经后高FSH水平CVD风险增加。长链脂酰辅酶A合成酶(long-chain acyl-Co A synthetase, ACSL)催化12~20碳链之间的脂肪酸合成脂酰辅酶A,是体内TG合成及脂肪酸β氧化的第一步反应。ACSL同工酶ACSL3过表达,导致血清和肝脏TG及游离脂肪酸水平降低 [41] ,但是其机制尚不清楚。已经有研究证明TNF-α促进ACSL3蛋白表达,绝经后血清FSH与TG呈负相关 [17] 。那么FSH是否与通过TNF-α/ACSL3降低TG水平?需要更多的实验证明。

5. 问题与展望

围绝经期女性内分泌的巨大变化,尤其是绝经后血清FSH水平急剧升高,对血糖、血脂水平可能产生负面影响。导致绝经后糖脂代谢紊乱,使2型糖尿病患者并发CVD风险增加,降低其生活质量,增加死亡风险。随着近几年的深入研究,国内外学者发现FSH/FSHR控制多条重要信号通路,如果信号发生异常,将导致脂代谢紊乱、骨质疏松及恶性肿瘤、炎症等的发生。绝经后T2DM患者升高的FSH对血脂异常的潜在作用机制尚未完全明确。阻断FSH信号通路是否能成为血脂异常有价值的治疗靶点在很大程度上不可知,HRT是否通过影响FSH水平有利于降低绝经女性血脂异常患病率及发生CVD的风险,还需更多的临床研究、实验证实。但是,FSH导致血脂异常的潜在分子机制研究,为绝经后T2DM患者降脂治疗提供了新思路。

基金项目

济宁市重点研发计划项目(2021YXNS005)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Magliano, D.J. and Boyko, E.J. (2021) IDF Diabetes Atlas. 10th Edition, International Diabetes Federation, Brus-sels.
[2] Zheng, Y., Ley, S.H. and Hu, F.B. (2018) Global Aetiology and Epidemiology of Type 2 Diabetes Mellitus and Its Complications. Nature Reviews Endocrinology, 14, 88-98.
https://doi.org/10.1038/nrendo.2017.151
[3] Wang, H.Q., Zhang, W.D., Yuan, B., et al. (2021) Advances in the Regulation of Mammalian Follicle-Stimulating Hormone Secretion. Animals (Basel), 11, 1134.
https://doi.org/10.3390/ani11041134
[4] 赵彩霞, 刘鹏. 卵泡刺激素新的代谢调控功能及对衰老的影响[J]. 生理学报, 2021, 73(5): 755-760.
https://doi.org/10.13294/j.aps.2021.0076
[5] Sun, L., Peng, Y., Sharrow, A.C., et al. (2006) FSH Directly Regu-lates Bone Mass. Cell, 125, 247-260.
https://doi.org/10.1016/j.cell.2006.01.051
[6] Wang, C., Zhang, W., Wang, Y., et al. (2019) Novel Associations between Sex Hormones and Diabetic Vascular Complications in Men and Postmenopausal Women: A Cross-Sectional Study. Cardiovascular Diabetology, 18, 97.
https://doi.org/10.1186/s12933-019-0901-6
[7] Kaze, A.D., Santhanam, P., Musani, S.K., et al. (2021) Metabolic Dyslipidemia and Cardiovascular Outcomes in Type 2 Diabetes Mellitus: Findings From the Look AHEAD Study [Pub-lished Correction Appears in J Am Heart Assoc. 2021 Jul 20; 10(14): e020749]. Journal of the American Heart Associa-tion, 10, e016947.
https://doi.org/10.1161/JAHA.120.016947
[8] Netjasov, A.S., Vujović, S., Ivović, M., et al. (2013) Relationships between Obesity, Lipids and Fasting Glucose in the Menopause. Srpski Arhiv Za Celokupno Lekarstvo, 141, 41-47.
https://doi.org/10.2298/SARH1302041S
[9] Emerging Risk Factors Collaboration, Sarwar, N., Gao, P., et al. (2010) Diabetes Mellitus, Fasting Blood Glucose Concentration, and Risk of Vascular Disease: A Collaborative Me-ta-Analysis of 102 Prospective Studies [Published Correction Appears in Lancet. 2010 Sep 18; 376(9745): 958. Hillage, H L [Corrected to Hillege, H L]]. The Lancet, 375, 2215-2222.
https://doi.org/10.1016/S0140-6736(10)60484-9
[10] Barton, M. (2013) Cholesterol and Atherosclerosis: Modula-tion by Oestrogen. Current Opinion in Lipidology, 24, 214-220.
https://doi.org/10.1097/MOL.0b013e3283613a94
[11] Zhao, D., Guallar, E., Ouyang, P., et al. (2018) Endogenous Sex Hormones and Incident Cardiovascular Disease in Post-Menopausal Women. Journal of the American College of Cardiology, 71, 2555-2566.
https://doi.org/10.1016/j.jacc.2018.01.083
[12] Zhu, D., Chung, H.F., Dobson, A.J., et al. (2020) Type of Meno-pause, Age of Menopause and Variations in the Risk of Incident Cardiovascular Disease: Pooled Analysis of Individual Data from 10 International Studies. Human Reproduction, 35, 1933-1943.
https://doi.org/10.1093/humrep/deaa124
[13] Randolph, J.F., Sowers, M., Bondarenko, I.V., et al. (2004) Change in Estradiol and Follicle-Stimulating Hormone across the Early Menopausal Transition: Effects of Ethnicity and Age. The Journal of Clinical Endocrinology & Metabolism, 89, 1555-1561.
https://doi.org/10.1210/jc.2003-031183
[14] Willeit, P., Tschiderer, L., Allara, E., et al. (2020) Carotid Inti-ma-Media Thickness Progression as Surrogate Marker for Cardiovascular Risk: Meta-Analysis of 119 Clinical Trials Involving 100 667 Patients. Circulation, 142, 621-642.
https://doi.org/10.1161/CIRCULATIONAHA.120.046361
[15] Bertone-Johnson, E.R., Virtanen, J.K., Nurmi, T., et al. (2018) Follicle-Stimulating Hormone Levels and Subclinical Atherosclerosis in Older Postmenopausal Women. American Journal of Epidemiology, 187, 16-26.
https://doi.org/10.1093/aje/kwx174
[16] Wang, N., Shao, H., Chen, Y., et al. (2017) Follicle-Stimulating Hormone, Its Association with Cardiometabolic Risk Factors, and 10-Year Risk of Cardiovascular Disease in Postmenopausal Women. Journal of the American Heart Association, 6, e005918.
https://doi.org/10.1161/JAHA.117.005918
[17] Jung, E.S., Choi, E.K., Park, B.H., et al. (2020) Serum Folli-cle-Stimulating Hormone Levels Are Associated with Cardiometabolic Risk Factors in Post-Menopausal Korean Women. Journal of Clinical Medicine, 9, 1161.
https://doi.org/10.3390/jcm9041161
[18] El Khoudary, S.R., Santoro, N., Chen, H.Y., et al. (2016) Trajectories of Estradiol and Follicle-Stimulating Hormone over the Menopause Transition and Early Markers of Atherosclerosis after Menopause. European Journal of Preventive Cardiology, 23, 694-703.
https://doi.org/10.1177/2047487315607044
[19] Taneja, C., Gera, S., Kim, S.M., Iqbal, J., Yuen, T. and Zaidi, M. (2019) FSH-Metabolic Circuitry and Menopause. Journal of Molecular Endocrinology, 63, R73-R80.
https://doi.org/10.1530/JME-19-0152
[20] Matthews, K.A., Chen, X., Barinas-Mitchell, E., et al. (2021) Age at Menopause in Relationship to Lipid Changes and Subclinical Carotid Disease across 20 Years: Study of Women’s Health across the Nation. Journal of the American Heart Association, 10, e021362.
https://doi.org/10.1161/JAHA.121.021362
[21] Serviente, C., Tuomainen, T.P., Virtanen, J., Witkowski, S., Niskanen, L. and Bertone-Johnson, E. (2019) Follicle- Stimulating Hormone Is Associated with Lipids in Postmenopau-sal Women. Menopause, 26, 540-545.
https://doi.org/10.1097/GME.0000000000001273
[22] Guo, Y., Zhao, M., Bo, T., et al. (2019) Blocking FSH In-hibits Hepatic Cholesterol Biosynthesis and Reduces Serum Cholesterol. Cell Research, 29, 151-166.
https://doi.org/10.1038/s41422-018-0123-6
[23] Song, Y., Wang, E.S., Xing, L.L., et al. (2016) Folli-cle-Stimulating Hormone Induces Postmenopausal Dyslipidemia through Inhibiting Hepatic Cholesterol Metabolism. The Journal of Clinical Endocrinology & Metabolism, 101, 254-263.
https://doi.org/10.1210/jc.2015-2724
[24] Xu, Z., Gu, S., Wu, X., et al. (2022) Association of Follicle Stimulating Hormone and Serum Lipid Profiles in Postmenopausal Women. Medicine (Baltimore), 101, e30920.
https://doi.org/10.1097/MD.0000000000030920
[25] Chappel, S.C., Ulloa-Aguirre, A. and Coutifaris, C. (1983) Biosynthesis and Secretion of Follicle-Stimulating Hormone. Endocrine Reviews, 4, 179-211.
https://doi.org/10.1210/edrv-4-2-179
[26] Haldar, S., Agrawal, H., Saha, S., et al. (2022) Overview of Follicle Stimulating Hormone and Its Receptors in Reproduction and in Stem Cells and Cancer Stem Cells. International Journal of Biological Sciences, 18, 675-692.
https://doi.org/10.7150/ijbs.63721
[27] Bhartiya, D. and Patel, H. (2021) An Overview of FSH-FSHR Biology and Explaining the Existing Conundrums. Journal of Ovarian Research, 14, 144.
https://doi.org/10.1186/s13048-021-00880-3
[28] Mao, L., Wang, L., Bennett, S., et al. (2022) Effects of Folli-cle-Stimulating Hormone on Fat Metabolism and Cognitive Impairment in Women during Menopause. Frontiers in Physiology, 13, Article ID: 1043237.
https://doi.org/10.3389/fphys.2022.1043237
[29] Cui, H., Zhao, G., Liu, R., et al. (2012) FSH Stimulates Lipid Biosynthesis in Chicken Adipose Tissue by Upregulating the Expression of Its Receptor FSHR. Journal of Lipid Re-search, 53, 909-917.
https://doi.org/10.1194/jlr.M025403
[30] Liu, X.M., Chan, H.C., Ding, G.L., et al. (2015) FSH Regulates Fat Accumulation and Redistribution in Aging through the Gαi/Ca(2+)/CREB Pathway. Aging Cell, 14, 409-420.
https://doi.org/10.1111/acel.12331
[31] Sayers, N. and Hanyaloglu, A.C. (2018) Intracellular Folli-cle-Stimulating Hormone Receptor Trafficking and Signaling. Frontiers in Endocrinology (Lausanne), 9, 653.
https://doi.org/10.3389/fendo.2018.00653
[32] Mattick, L.J., Bea, J.W., Singh, L., et al. (2022) Serum Folli-cle-Stimulating Hormone and 5-Year Change in Adiposity in Healthy Postmenopausal Women. The Journal of Clinical Endocrinology & Metabolism, 107, e3455-e3462.
https://doi.org/10.1210/clinem/dgac238
[33] Yang, D., Vuckovic, M.G., Smullin, C.P., et al. (2018) Modest De-creases in Endogenous All-trans-Retinoic Acid Produced by a Mouse Rdh10 Heterozygote Provoke Major Abnormalities in Adipogenesis and Lipid Metabolism. Diabetes, 67, 662-673.
https://doi.org/10.2337/db17-0946
[34] Khanehzad, M., Abbaszadeh, R., Holakuyee, M., Modarressi, M.H. and Nourashrafeddin, S.M. (2021) FSH Regulates RA Signaling to Commit Spermatogonia into Differentiation Pathway and Meiosis. Reproductive Biology and Endocrinology, 19, 4.
https://doi.org/10.1186/s12958-020-00686-w
[35] Jung, H.S., Shimizu-Albergine, M., Shen, X., et al. (2020) TNF-α Induces acyl-CoA Synthetase 3 to Promote Lipid Droplet Formation in Human Endothelial Cells. Journal of Lipid Research, 61, 33-44.
https://doi.org/10.1194/jlr.RA119000256
[36] 张荣, 陈雁斌, 袁中华. 脂酰辅酶A长链合成酶3及其相关疾病[J]. 中国生物化学与分子生物学报, 2022, 38(6): 736-741.
https://doi.org/10.13865/j.cnki.cjbmb.2022.01.1279
[37] Zhang, Y., Yang, X., Bian, F., et al. (2014) TNF-α Pro-motes Early Atherosclerosis by Increasing Transcytosis of LDL across Endothelial Cells: Crosstalk between NF-κB and PPAR-γ. Journal of Molecular and Cellular Cardiology, 72, 85-94.
https://doi.org/10.1016/j.yjmcc.2014.02.012
[38] Qian, H., Jia, J., Yang, Y., et al. (2020) A Follicle-Stimulating Hormone Exacerbates the Progression of Periapical Inflammation through Modulating the Cytokine Release in Periodon-tal Tissue. Inflammation, 43, 1572-1585.
https://doi.org/10.1007/s10753-020-01234-9
[39] Abildgaard, J., Tingstedt, J., Zhao, Y., et al. (2020) Increased Systemic Inflammation and Altered Distribution of T-Cell Subsets in Postmenopausal Women. PLOS ONE, 15, e0235174.
https://doi.org/10.1371/journal.pone.0235174
[40] Piao, J., Yin, Y., Zhao, Y., et al. (2022) Folli-cle-Stimulating Hormone Accelerates Atherosclerosis by Activating PI3K/Akt/NF-κB Pathway in Mice with Androgen Deprivation. Journal of Vascular Research, 59, 358-368.
https://doi.org/10.1159/000527239
[41] Wu, M., Cao, A., Dong, B., et al. (2011) Reduction of Serum Free Fatty Acids and Triglycerides by Liver-Targeted Expression of Long Chain Acyl-CoA Synthetase 3. International Journal of Molecular Medicine, 27, 655-662.
https://doi.org/10.3892/ijmm.2011.624