纳米Fe/Ni薄膜界面位错的形核和发射
The Nucleation and Emission of Dislocation of Nano Fe/Ni Interface
DOI: 10.12677/nat.2012.22005, PDF, 下载: 3,398  浏览: 10,031  国家自然科学基金支持
作者: 周银库, 陈尚达*:湘潭大学材料与光电物理学院
关键词: Fe/Ni界面分子动力学失配位错滑移位错
Fe/Ni Interface; Molecular Dynamics; Misfit Dislocation; Glide Dislocation
摘要: 用分子动力学模拟的方法研究了拉伸加载下位错在Fe/Ni界面的形核和发射过程。拉伸沿Fe[1 0 0]方向进行,平行于界面。由于晶格失配,系统弛豫后在Fe(0 0 1)/Ni(1 1 0)界面处会形成长方形的失配位错网络。模拟结果显示,当应变达到7.2%时,滑移位错首先在界面处失配位错线上形核,随着应变增加滑移位错向铁内部发射,而在镍内部并没有位错发射。当应变达到8.4%时,镍内才出现位错发射。在Fe基底中位错主要在{1 1 0}滑移面上滑移,而在Ni中主要在{1 1 1}滑移面上滑移。
Abstract: Molecular dynamics simulations were carried out to investigate the nucleation and emission of dislocation initialized from an interface within a Fe/Ni bilayer. A tensile loading was applied parallel to the issued interface. After relaxation, rectangular shaped dislocations were observed at the Fe(0 0 1)/Ni(1 1 0) interface. The simulation results show that glide dislocation nucleated from the interface firstly when the strain reach 7.2%, and emitted into Fe layer as the strain increasing. The dislocation nucleated and emitted in Ni layer only when the strain reached 8.4%. Glide dislo- cations were found to mainly occur on {1 0 1} plane in Fe layer and on {1 1 1} plane in Ni layer.
文章引用:周银库, 陈尚达. 纳米Fe/Ni薄膜界面位错的形核和发射[J]. 纳米技术, 2012, 2(2): 23-26. http://dx.doi.org/10.12677/nat.2012.22005

参考文献

[1] S. J. Lloyd, J. M. Molina-Aldareguia. Multilayered materials: A palette for the materials artist. Philosophical Transactions of the Royal Society of London, Series A, 2003, 361(1813): 2931-2949.
[2] P. M. Derlet, P. Gumbsch, R. G. Hoagland, et al. Atomistic simulations of dislocations in confined volumes. MRS Bulletin, 2009, 34(3): 184-189.
[3] D. L. Zheng, S. D. Chen, A. K. Soh, et al. Molecular dynamics simulations of glide dislocations induced by misfit dislocations at the Ni/Al interface. Computational Materials Science, 2010, 48(3): 551-555.
[4] S. Shao, S. N. Medyanik. Dislocation-interface interaction in nanoscale fcc metallic bilayer. Mechanics Research Communi- cations, 2010, 37(3): 315-319.
[5] D. Saraev, R. E. Miller. Atomic-scale simulations of nanoindentation-induced plasticity in copper crystals with nanometer-sized nickel coatings. Acta Materialia, 2006, 54(1): 33-45.
[6] S. N. Medyanik, S. Shao. Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Computational Materi- als Science, 2009, 45(4): 1129-1133.
[7] R. G. Hoagland, R. J. Kurtz and C. H. Henager. Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia, 2004, 50(6): 775-779.
[8] J. Wang, R. G. Hoagland, J. P. Hirth, et al. Atomistic modeling of the interaction of glide dislocations with “weak” interfaces. Acta Materialia, 2008, 56(19): 5685-5693.
[9] M. Gavrila, J. P. Millet and H. Mazille. Corrosion behaviour of zinc-nickel coatings, electrodeposited on steel. Surface & Coat- ings Technology, 2000, 123(2): 164-172.
[10] Z. S. Ma, S. G. Long, X. B. Zhang, et al. Effect of tension de- formation on microstructure and mechanism of electrodeposited nickel coating. Transactions of Nonferrous Metals Mociety of China, 2007, 17(1): 818-822.
[11] G. Bonny, R. C. Pasianot and L. Malerba. Fe-Ni many-body potential for metallurgical applications. Modelling and Simula- tion in Materials Science and Engineering, 2009, 17(1): Article ID 025010.
[12] S. Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1-19.
[13] C. L. Kelchner, S. J. Plimpton and J. C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998, 58(17): 11085-11088.
[14] S. A. Kotrechko, A. V. Filatov and A. V. Ovsjannikov. Molecular dynamics simulation of deformation and failure of nanocrystals of BCC metals. Theoretical and Applied Fracture Mechanics, 2006, 45(2): 92-99.
[15] G. E. Norman, V. V. Stegailov and A. V. Yanilkin. The modeling of high-rate tension of crystalline iron by the method of molecu- lar dynamics. High Temperature, 2007, 45(2): 164-172.
[16] T. Hitomi, N. Morita, Y. Yoshida, et al. A study of structural phase transitions caused with tensile stress of single crystal iron-simulations of uniaxial tension tests using molecular dy- namics. Journal of the Japan Society of Precision Engineering, 1999, 65(11): 1798-1803 (in Japanese).
[17] R. Komanduri, N. Chandrasekaran and L. M. Raff. Molecular dynamics (MD) simulation of uniaxial tension of some sin- gle-crystal cubic metals at nanolevel. International Journal of Mechanical Sciences, 2001, 43(10): 2237-2260.
[18] D. M. Clatterbuck, D. C. Chrzan and J. J. W. Morris. The influ- ence of triaxial stress on the ideal tensile strength of iron. Scripta Materialia, 2003, 49(10): 1007-1011.