胰岛β细胞去分化模型的研究进展
Advances in Dedifferentiation Models of Pancreatic β Cells
DOI: 10.12677/HJBM.2023.132030, PDF, HTML, XML, 下载: 253  浏览: 829  国家自然科学基金支持
作者: 张东文*, 罗 晨#:中国药科大学生命科学与技术学院,江苏 南京;庾璐婷#:南京工业大学药学院,江苏 南京
关键词: 胰岛β细胞去分化二型糖尿病去分化模型去分化研究方法Islet Beta Cell Dedifferentiation Type 2 Diabetes Mellitus Dedifferentiation Model Dedifferentiation Research Methods
摘要: 二型糖尿病是具有遗传倾向的多病因的慢性代谢性疾病,长期糖脂代谢紊乱引发的β细胞衰竭会引起多种并发症。针对二型糖尿病的以往研究主要关注于降低血糖和胰岛素增敏。但随着胰岛β细胞去分化的发现,实现胰岛β细胞的内源性更新成为二型糖尿病领域新的研究方向。促进去分化的胰岛β细胞再生,建立β细胞质量和功能的稳态对于二型糖尿病早期的治疗具有很大的前景,而对于胰岛β细胞去分化药物的筛选及评价需要建立合理有效的实验模型。本综述通过详细介绍胰岛β细胞及其去分化的可能机制、模型建立及相关研究方法,为胰岛β细胞去分化的研究提供思路方法。
Abstract: Type 2 diabetes mellitus is a chronic metabolic disease with genetic predisposition and multiple etiology. The β-cell failure caused by long-term disorder of glucose and lipid metabolism can lead to many complications. Previous studies on type 2 diabetes have focused on lowering blood sugar and insulin sensitization. However, with the discovery of dedifferentiation of islet beta cells, endogenous renewal of islet beta cells has become a new research direction in type 2 diabetes. Promoting the regeneration of dedifferentiated pancreatic β cells and establishing the homeostasis of β cell mass and function have great prospects for the early treatment of type 2 diabetes. However, it is necessary to establish a reasonable and effective experimental model for the screening and evaluation of drugs for dedifferentiated pancreatic β cells. In this review, the possible mechanism, model establishment and related research methods of islet beta cells and their dedifferentiation are introduced in detail, so as to provide ideas and methods for the study of islet beta cell dedifferentiation.
文章引用:张东文, 罗晨, 庾璐婷. 胰岛β细胞去分化模型的研究进展[J]. 生物医学, 2023, 13(2): 263-272. https://doi.org/10.12677/HJBM.2023.132030

1. 引言

二型糖尿病(Type 2 Diabetes Mellitus, T2DM)的致病因素复杂,除基因遗传因素导致个体易感外,生活方式和饮食习惯也是疾病发生的重要原因。胰岛素抵抗被认为是T2DM发生和发展的主要病理特征,因此现阶段的治疗药物也主要是降糖和增加胰岛素敏感性为主 [1] [2] 。Mastracci等 [3] 认为功能性胰岛β细胞缺陷是T2DM发病的主要原因。研究表明 [4] ,胰岛β细胞自我增殖能力会随着年龄的增加而下降,因此老年人T2DM发病率显著高于年轻人群。近年来,T2DM的发病人群出现了年轻化趋势,可能是由于不良的生活习惯和作息影响 [5] 。在T2DM患者中,胰岛β细胞功能处于长期衰竭状态,导致多种并发症易感,其大幅增加了糖尿病诱发的患者死亡 [6] [7] 。传统观点认为糖尿病是由胰岛β细胞凋亡引起的 [8] 。然而,最新研究表明,胰岛β细胞去分化在T2DM患者的胰腺中普遍存在,去分化的胰岛β细胞不再参与胰岛素的合成与释放,而是进入一种“生理性死亡”的状态 [9] ,该状态下的β细胞具有低氧耗、低代谢活性的特点,糖代谢水平和胰岛素合成/分泌能力显著下降,对葡萄糖刺激呈现极低的反应性,但同时具备较强的增殖能力和可塑性,存在分化潜能。Weng等 [10] [11] 人发现这种功能缺陷与转录因子FoxO1功能丧失有关。成熟的胰岛β细胞表达特异性转录因子,如叉头盒转录因子(forkhead box transcription factor O1, FoxO1)、肌腱膜纤维肉瘤癌基因同源物A (musculoaponeurotic fibrosarcoma oncogene homolog A, MafA)、十二指肠同源盒蛋白1 (pancreas/duodenum homeobox protein 1, Pdx1)、人类配对盒N基因(paired-box gene 6, Pax6)、NK6同源框1 (Nk6 homebox 1, Nkx6.1)、NK2同源框2 (Nk2 homebox 2, Nkx2.2)等,这些转录因子对维持胰岛β细胞特性和功能有重要作用 [7] [12] ,而在T2DM小鼠和患者的胰岛β细胞中相关因子表达下调甚至缺失。Salinno [13] 等人通过体外实验模拟T2DM发现,胰岛β细胞也出现了功能低下的现象,并伴随着胰岛β细胞相关转录因子的下调,甚至出现祖细胞标志物的胰岛β细胞。有研究学者将这种现象定义为“负责胰岛素分泌等优良性能的关键成分的丢失”,又称胰岛β细胞去分化 [14] 。越来越多的证据表明,在不同的遗传因素和环境因素的影响下,胰岛β细胞会有不同的命运归宿。而去分化的胰岛β细胞会失去分泌胰岛素的能力,并且会转化为具有多向分化潜能的内分泌前体细胞,这是一个可逆的过程,如果改变环境因素或是调控关键因子,“沉默”的β细胞完全有可能恢复至其正常生物活性 [7] [15] [16] 。糖尿病前期的成年哺乳动物体内胰岛β细胞的数量和功能处于动态平衡状态,表明通过补充内源性β细胞可用于糖尿病胰岛β细胞维持治疗。胰岛β细胞去分化在T2DM的发生和发展中发挥着重要作用,且在人和动物模型中均已被证实 [17] [18] 。胰岛β细胞休息被认为是防止或逆转胰岛β细胞去分化的一种机制,Boland等 [19] 发现缓解血糖稳态有助于恢复胰岛β细胞分泌胰岛素的能力。Wang [20] 等利用体外培养的Procr + 胰岛干细胞有效缓解了糖尿病小鼠发病。因此寻找调控胰岛β细胞分化再生的药物,利用去分化的β细胞为再生来源,诱导其再次功能性成熟发挥内源性血糖调控,成为现代糖尿病治疗领域重要的研究方向。而构建切实可行的体内外去分化模型也成为了该领域研究的重要门槛。但目前对于去分化模型还没有建立统一的标准,针对胰岛β细胞去分化途径和机制还尚未了解。

2. 胰岛β细胞与二型糖尿病

2.1. 胰岛β细胞的来源

胰腺是由外分泌组织、导管、内分泌细胞和相关结缔组织构成。其中内分泌细胞大多以细胞团的形式存在,呈椭球形散布于胰腺的外分泌组织中,与导管紧密相连。1869年,Langerhans [21] 首次发现这些细胞团结构,故胰岛又称为“Langerhans岛”。胰岛之间也存在结构性质与分布上的差异,弥散型胰岛多分布于胰头后下部,而密实型胰岛多分布于胰腺其余部位。胰岛作为直径为50~280 μm的微器官,其最经典胰岛内布局为“核心–外套”结构,即胰岛β细胞成簇聚集于胰岛核心,周围被α细胞、δ细胞和PP细胞所围绕 [22] 。研究发现,小鼠胰岛β细胞约占胰岛细胞总数的77%,人胰岛β细胞约占胰岛细胞总数的55% [23] 。胰岛β细胞作为胰岛细胞的主体构成,其核多呈卵圆形,可见核仁,染色质散在分布,细胞质中等密度 [3] 。其结构的主要特点为分泌颗粒,分泌颗粒中主要含有释放的胰岛素和胰岛素原。胰岛β细胞在葡萄糖、氨基酸和脂肪酸等营养物质及激素神经等调节下,经固有途径和受调途径分泌胰岛素 [24] 。在个体发育中,胰腺由内胚层发育而来。其中背侧前肠内胚层中的胰腺多能祖细胞(multipotent progenitor cells, MPCs)分别发育成胃、十二指肠和背侧胰腺;腹侧前肠内胚层中的MPCs分别发育成肝脏、胆囊和腹侧胰腺 [3] 。胰腺的MPCs具有分化成双能祖细胞(bipotent progenitors, BPs)和单能前腺泡细胞(unipotent pro-acniar cells, PACs)的能力。顶端的PACs形成腺泡的前体细胞群,躯干的BPs分化为导管细胞群和内分泌细胞群 [25] [26] 。随后腺泡前体细胞分化时启动成熟腺泡细胞标记物(羧肽酶A)的表达,最终形成胰腺的外分泌腺部分。导管祖细胞分化成胰管用于连接腺泡和十二指肠,内分泌前体细胞则迁移至周围间质中,分化为α细胞、胰岛β细胞、δ细胞和PP细胞等内分泌细胞[24] [27] 。有研究学者通过遗传谱系示踪证明了胰岛β细胞的自我复制是哺乳动物出生后以及不同损伤条件下产生新胰岛β细胞的主要手段 [28] 。也有学者认为内源性的胰岛β细胞来源可能是通过分化的非胰岛β细胞转分化或通过胰岛干细胞或祖细胞的分化 [29] 。

2.2. 二型糖尿病的发病机制

“糖尿病前期”异常升高的游离脂肪酸(free fat acid, FFA)导致外周胰岛素抵抗水平升高,肝脏和肌肉的FFA通量增加导致脂肪异位沉积,肝糖原和肌糖原合成减少,加剧血糖进一步升高。高血糖和高血脂又会通过三羧酸循环(tricarboxylic acid cycle, TCA cycle)和葡萄糖/不饱和脂肪酸循环(glycerolipid/nonesterified fatty acids cycle, GL/NEFA cycle)促进胰岛β细胞分泌胰岛素。长期高水平的FFA通过G蛋白偶联受体介导的信号通路直接促进胰岛β细胞分泌胰岛素 [30] [31] 。研究表明,错误折叠的蛋白会激活细胞未折叠蛋白反应(unfolded protein response, UPR)通路的IRE1、PERK和ATF6蛋白;活性氧(reactive oxygen species, ROS)的主要来源是线粒体,同时线粒体也是ROS攻击和发挥作用的靶标 [32] [33] [34] [35] 。而胰岛β细胞长期高负荷工作会导致胞内错误折叠的蛋白和ROS增多,进而引发胰岛β细胞的内质网应激和氧化应激 [36] 。在胰岛β细胞中,糖脂毒性会引起炎性细胞因子分泌和巨噬细胞聚集,进而产生胰岛炎症 [37] [38] 。长期的胰岛素抵抗、炎症和代谢应激扰乱了胰岛β细胞代偿平衡,最终导致糖耐量受损(或糖尿病前期) [39] [40] [41] 。胰岛β细胞由糖脂适应性转变为糖脂毒性的过程中伴随着胰岛β细胞的去分化、自噬或是凋亡。“糖尿病前期”终末,胰岛β细胞衰竭造成功能性胰岛β细胞急剧减少,血糖调控受损,最终发展成T2DM [42] [43] 。

2.3. 胰岛β细胞去分化机制

虽然现阶段研究不能完全解释胰岛β细胞的去分化现象,但我们可以将β细胞去分化看做MPCs分化的逆过程进行研究。胰岛发育研究发现,Notch、Wnt和TGFβ等经典信号通路参与胰岛β细胞去分化的发生。Dll1-Notch-Hes1信号通路协调控制MPCs的增殖及其向BPs和PACs的分化,Notch高活性时通过Hes1抑制神经生成素3 (neurogenin 3, NGN3)表达从而阻碍内分泌祖细胞的分化;而中度活性的Notch不激活Hes1转而激活Sox9,后者通过解除Ngn3的表达抑制从而促进内分泌祖细胞的分化 [18] [44] [45] [46] 。Wnt-Gsk3β-β-catenin信号通路可通过调节c-Myc癌基因和蛋白激酶B (protein kinase B, Akt)控制胰岛β细胞的增殖和分化 [47] [48] [49] ,在糖脂代谢紊乱小鼠的差异基因分析中也发现Wnt通路的基因富集 [50] 。TGFβ通过Smad3和Akt影响胰岛β细胞的发育和去分化 [51] [52] [53] 。此外,JNK信号通路也被认为通过Akt影响胰岛β细胞功能调节 [54] 。除了经典信号通路的研究,Kim-Muller [55] 等人发现FoxO1参与胰岛β细胞Ngn3和Pdx1等关键分化因子的调节,沉默FoxO1基因后,胰岛β细胞成熟的相关基因显著下调,并伴随祖细胞样基因上调。Xu [56] 等人认为胰岛β细胞去分化与线粒体功能障碍紧密相关,而线粒体融合蛋白-2 (mitochondrial fusion protein 2, Mnf2)通过胰岛素受体底物1/2 (insulin receptor substrate-1/2, IRS-1/2)/磷脂酰肌醇3-激酶(phosphatidylin-ositol-3-kinase, PI3K)/Akt途径调控胰岛β细胞的发育。因此,胰岛β细胞去分化可归结为β细胞功能相关信号的紊乱及关键调控因子的失活。

3. 胰岛β细胞去分化模型

3.1. 体外模型

胰岛β细胞去分化是一个动态平衡过程,因此构建稳定的胰岛β细胞去分化模型对于药物靶点筛选和候选药物开发十分必要。由于原代胰岛β细胞增殖特性缺失,研究者建立了多种具有正常胰岛β细胞特性的细胞系用于去分化研究。常见的细胞系如鼠源INS-1细胞系、Min6细胞系和RIN-m5F细胞系,以及人源的EndoC-βH1细胞系 [57] 。研究表明离体培养的成人胰岛β细胞会发生上皮间质转换(epithelial-mesenchymal transition, EMT),经历快速短暂的去分化阶段 [58] [59] [60] 。同样的,Min6细胞在体外培养过程中也存在去分化现象,早代Min6细胞呈球形,而晚代Min6细胞形态为更多的突起,将Min6细胞从第28代高糖培养4天至第82代,出现胰岛素分泌能力降低,同时伴随葡萄糖转运蛋白2 (glucose transporter type 2, Glut2)、MafA和Nkx6.1等胰岛β细胞成熟因子表达的显著下调 [61] 。

另有学者模拟T2DM患者胰岛β细胞去分化诱因,采用高糖高脂单一或联合诱导细胞去分化。例如,35 mM葡萄糖刺激Min6细胞72 h或者0.5 mM棕榈酸诱导Min6细胞48 h,均能观察到细胞功能下降以及β细胞成熟指标下调 [62] 。又如INS-1长期暴露于高糖和棕榈酸培养会导致细胞内ROS量增加2.5倍,胰岛素分泌严重减少 [63] 。利用30 mM的葡萄糖和0.4 mM的棕榈酸联合处理Min6细胞96 h,30 mM的葡萄糖和1 mM的棕榈酸联合处理EndoC-βH1细胞96 h,25 mM的葡萄糖和0.4 mM的棕榈酸联合处理原代胰岛细胞48 h,单细胞测序分析发现尿皮素3 (urocortin 3, Ucn3)等胰岛β细胞成熟相关指标及FoxO等信号通路显著下调 [13] ,说明高脂高糖联合造模可以在多种细胞中建立β细胞去分化模型。也有研究指出,过高浓度的棕榈酸会导致Min6细胞凋亡,因此棕榈酸浓度的选择十分重要 [64] 。原代胰岛细胞不同于Min6细胞等细胞系,由于其作为细胞微团形式存在,因而棕榈酸浓度要相对降低 [13] ;或者需提前将原代胰岛细胞制备成单细胞悬液用于模型建立 [65] 。

成纤维细胞生长因子(fibroblast growth factor, FGF)调控细胞的增殖、分化、迁移和胚胎的形成。Diedisheim等 [66] [67] 在添加FGF2或FGF2载体(PBS-BSA 0.2%)的培养基中连续三天培养原代胰岛细胞,结果发现该细胞在FGF处理后,胰岛素和MafA等因子表达显著下降,Sox9和Hes1等祖细胞标记表达上升。同时,体内研究发现FGF参与调控了T2DM中胰岛β细胞的去分化过程。基于胰腺癌患者中存在胰岛β细胞功能障碍的现象,Donadel等 [68] 将新鲜分离的胰岛放置于Panc-1培养基(含10mMHEPES)中,结果发现胰岛细胞出现胰岛素分泌功能障碍,Glut2和Ucn3等成熟指标低表达,而醛脱氢酶1家族成员A3 (aldehyde dehydrogenase 1 A3, Aldh1a3)和胰岛素原等功能退化指标高表达。Casteels等 [10] 在FoxO1基因沉默的细胞系及原代胰岛中发现胰岛β细胞的凋亡和自我复制潜能未发生改变,但胰岛β细胞相关转录因子Pdx1和MafA表达缺失,内分泌祖细胞标志物Ngn3和Oct4被检测出。Jesus等 [69] 通过miR-7抑制Pax6进而调控EMT信号通路,最终导致成熟胰岛β细胞特性的丢失。Chen等 [70] 在Min6细胞中激活肾素–血管紧张素系统(renin-angiotensin system, RAS)后发现核因子κB (nuclear factor kappa-B, NF-κB)信号通路会诱导其发生去分化,进而出现胰岛素分泌受损的情况。

3.2. 体内模型

体内胰岛β细胞的去分化涉及复杂的机制和过程,而动物模型的有效建立对于筛选药物的药理药效评价具有十分重要的意义。采用链脲佐菌素(streptozocin, STZ)注射破坏部分胰岛β细胞,致使小鼠出现糖耐量受损症状,病理切片发现胰岛内β细胞的Pdx-1、FoxO1等转录因子下调,但Tunnel阳性染色细胞核数量增多 [10] [71] 。因此,现阶段β细胞去分化研究主要通过构建早期T2DM模型,即糖尿病前期,作为胰岛β细胞去分化研究模型 [66] 。需要注意的是,选择合适的造模方式和造模时间,防止其发展成为T1DM或晚期T2DM,是去分化模型成模的关键 [14] 。常规的T2DM模型构建大致有两种:部分学者像Ilegems等 [38] [72] 通过构建饮食诱导肥胖模型(diet-induced obese, DIO)来代替胰岛素抵抗模型和早期T2DM模型,C57BL/6J小鼠在60%高脂饲料喂养的1~12个月内存在胰岛素抵抗和糖耐量受损。我们在前期研究中发现20周龄DIO小鼠存在胰岛β细胞去分化现象,这种现象在小鼠30周龄时有所减少,可能是糖尿病后期大量胰岛β细胞出现凋亡。纯高脂饮食诱导能够真实模拟T2DM发病历程,但周期长、成本高、成功率低等特点限制其应用。还有部分学者像Zhang等 [73] 采用构建DIO小鼠联合STZ诱导,60%高脂饲料喂养小鼠1~3个月使其产生胰岛素抵抗,随后通过多次小剂量STZ破坏部分胰岛β细胞,致使胰岛β细胞代谢失偿,诱发高血糖。这种建模方法主要缺点为个体差异导致的模型不稳定,容易发展成T1DM或晚期T2DM。

随着分子生物学技术的发展,基因敲除鼠在糖尿病和β细胞去分化领域得到广泛应用。Yan等 [15] [74] 在ATP敏感性钾通道获得性激活(KATP-GOF)小鼠和X盒结合蛋白1 (x-box binding protein 1, XBP1)敲除小鼠中也都检测到β细胞去分化现象。有学者构建的肥胖自发性单基因小鼠,通过将瘦素(Leptin, Lep)或其受体(Leptin receptor, Lepr)进行点突变导致Leptin信号通路障碍,从而致使小鼠发生肥胖、胰岛素抵抗、高血糖、脂肪肝等症状。Lee等 [17] 在Lep和Lepr突变小鼠的研究中发现其胰岛β细胞中FoxO1信号因子表达显著减少,ALDH1a3去分化标记因子明显提高。研究表明,肥胖自发性单基因小鼠、FoxO1基因敲除鼠和KATP-GOF小鼠可用于去分化模型的研究。但Lee等 [17] 在非肥胖糖尿病(non obese diabetes, NOD)小鼠和ob/ob小鼠的转录组测序分析中却发现小鼠从出生至发病时期的主成分分析(Principal Component Analysis, PCA)轨迹并不重叠,Ngn3祖细胞因子也并未上调表达,因此他又提出“Anna Karenina”模型,认为胰岛β细胞在不同代谢应激下可能发生不同类型的去分化,导致的最终细胞命运也不尽相同。因此,建立多种β细胞去分化模型且准确选择研究模型反映特定的病理特征,对β细胞去分化药物研究产生重要影响。

4. 胰岛β细胞去分化的研究方法

4.1. 免疫荧光共定位

免疫荧光技术是以抗原–抗体反应为基础的检测技术,通过对细胞特异性表达的蛋白质因子进行识别,精准定位特定类型和亚型的细胞。在免疫荧光的应用中,有研究学者通过对胰岛素(insulin,INS)和胰高血糖素(glucagon,GCG)特异性定位,发现T2DM患者的胰岛不符合经典的“核心–外套”结构,胰岛核心部位出现GCG的表达,经统计学分析后发现胰岛β细胞数量明显减少,α细胞数量明显增加,因此研究学者认为,T2DM患者的胰岛内部出现了细胞间的转化 [75] 。在β细胞去分化研究中,可以采用突触素(synaptophysin, SYN)阳性,内分泌激素4H (INS、GCG、生长抑素(somatostatin, SS)和胰多肽(pancreatic polypeptide, PP))阴性定位去分化的胰岛β细胞;同时以嗜铬粒蛋白A (chromogranin A, CGA)阳性,胰岛素阴性的细胞占比指示胰岛β细胞去分化的程度。在T2DM患者的胰腺病理切片中,通过免疫荧光染色可以发现β细胞功能特异性的转录因子FoxO1、MafA、Pdx1阳性表达下调,而内分泌祖细胞的标志物如Ngn3、八聚体结合转录因子4 (octamer-binding transcription factor 4, OCT4)和ALDH1a3阳性表达显著上升 [66] 。也有学者在发现功能未成熟的胰岛β细胞中分化簇81 (cluster of differentiation 81, CD81)的mRNA表达上调,因此利用免疫荧光染色验证CD81可以作为胰岛β细胞去分化研究的新型标记分子 [13] 。除此之外一些特殊的调节因子如微核糖核酸、长链非编码RNA、细胞色素b5还原酶3、HMG20A、多梳抑制复合物2的表达变化也可作为胰岛β细胞去分化的标志 [56] [76] 。由于高特异性和高灵敏性等优点,通过对研究对象的定位和定量实现胰岛β细胞的动态追踪,免疫荧光共定位技术被广泛应用于胰岛β细胞去分化的研究,并不断实现技术的更新,多重免疫荧光技术也逐渐发展成熟。

4.2. 遗传谱系示踪技术

鉴于动态追踪体内胰岛β细胞去分化过程存在技术瓶颈,通过遗传谱系示踪技术结合免疫荧光染色是当前β细胞去分化研究的主要方法。遗传谱系示踪技术是揭示特定类型细胞在发育、疾病和再生中转(分)化现象的有效研究方法。该技术起源于20世纪初,研究学者根据海鞘胚胎早期的分裂球着色存在差异,对分裂球的分裂过程进行了观察 [77] 。在当前细胞谱系示踪研究中,应用较为广泛的是Cre/loxP位点特异性重组系统。此系统最早在大肠杆菌P1中发现,由Cre重组酶和LoxP位点两部分组成 [78] 。然而,此系统在β细胞去分化研究中只能标记谱系轨迹中的一种细胞。近年来,对于新型遗传谱系示踪技术的研究与开发成为热点,例如利用Cre-loxP和Dre-rox双同源重组系统构建的交叉型报告小鼠IR1,可以同时区分标记胰岛β细胞和非胰岛β细胞,通过免疫荧光染色可在显微镜下观测到的标记分子为tdTomato和ZsGreen [79] 。也有学者利用遗传谱系示踪技术发现了Procr + 胰岛干细胞的存在,并在体外诱导培育出具有功能的胰岛类器官 [20] 。随着遗传谱系示踪技术的深入发展,研究学者将更精准地追踪胰岛β细胞的动态发展过程。

5. 总结与展望

现阶段T2DM的治疗以口服降糖药和胰岛素增敏剂为主,而针对胰岛β细胞功能性衰竭的药物缺乏。而胰岛β细胞的异体移植、干细胞疗法存在免疫排斥、技术难度高、效率低下、来源稀缺等问题。内源性补充胰岛β细胞被证实可用于糖尿病的治疗,胰岛β细胞进入凋亡程序前存在一个可逆转的去分化阶段,通过对胰岛β细胞去分化–再分化可塑性的调节,诱导其再次功能性成熟发挥内源性血糖调控,可能成为缓解甚至逆转T2DM进程的重要策略。但胰岛β细胞去分化发生的进程缓慢、信号通路复杂给研究学者带来很大的问题和挑战,因此建立统一标准的胰岛β细胞去分化模型有利于相关机制的探究和药理药效的评价。但同时胰岛β细胞何时以及如何发生去分化,药物何时干预以及如何干预等一系列问题都有待解决,未来胰岛β细胞去分化模型的建立将是更加精准有效的。相信随着去分化模型的精准建立,随着去分化的相关药物发展,内源性促进胰岛β细胞再生,进而获得有功能的胰岛类器官将是可能。

基金项目

本文通讯作者获国家自然科学基金(32100910)和南京工业大学引进人才科研启动专项经费资助。

参考文献

参考文献

[1] Mastrototaro, L. and Roden, M. (2021) Insulin Resistance and Insulin Sensitizing Agents. Metabolism, 125, Article ID: 154892.
https://doi.org/10.1016/j.metabol.2021.154892
[2] Chang, W., Chen, L. and Hatch, G.M. (2015) Berberine as a Therapy for Type 2 Diabetes and Its Complications: From Mechanism of Action to Clinical Studies. Biochemistry and Cell Biology, 93, 479-486.
https://doi.org/10.1139/bcb-2014-0107
[3] Mastracci, T.L. and Sussel, L. (2012) The Endocrine Pancreas: Insights into Development, Differentiation and Diabetes. Wiley Interdisciplinary Reviews. Developmental Biology, 1, 609-628.
https://doi.org/10.1002/wdev.44
[4] Lee, S., Zhang, J., Saravanakumar, S., Flisher, M.F. and Grimm, D.R. (2021) Virgin β-Cells at the Neogenic Niche Proliferate Normally and Mature Slowly. Diabetes, 70, 1070-1083.
https://doi.org/10.2337/db20-0679
[5] (2012) A Clinical Trial to Maintain Glycemic Control in Youth with Type 2 Diabetes. The New England Journal of Medicine, 366, 2247-2256.
https://doi.org/10.1056/NEJMoa1109333
[6] Butler, P.C., Meier, J.J., Butler, A.E. and Bhushan, A. (2007) The Replication of β Cells in Normal Physiology, in Disease and for Therapy. Nature Clinical Practice Endocrinology & Metabolism, 3, 758-768.
https://doi.org/10.1038/ncpendmet0647
[7] Remedi, M.S. and Emfinger, C. (2016) Pancreatic β-Cell Identity in Diabetes. Diabetes, Obesity and Metabolism, 18, 110-116.
https://doi.org/10.1111/dom.12727
[8] Butler, A.E., Janson, J., Bonner-Weir, S., Ritzel, R., Rizza, R.A., et al. (2003) Beta-Cell Deficit and Increased Beta-Cell Apoptosis in Humans with Type 2 Diabetes. Diabetes, 52, 102-110.
https://doi.org/10.2337/diabetes.52.1.102
[9] Deng, Z., Kuno, A., Ojima, M. and Takahashi, S. (2022) MafB Maintains β-Cell Identity under MafA-Deficient Conditions. Molecular and Cellular Biology, 42, e00541-21.
https://doi.org/10.1128/mcb.00541-21
[10] Casteels, T., Zhang, Y., Frogne, T., Sturtzel, C., Lardeau, C.-H., et al. (2021) An Inhibitor-Mediated Beta-Cell Dedifferentiation Model Reveals Distinct Roles for FoxO1 in Glucagon Repression and Insulin Maturation. Molecular Metabolism, 54, Article ID: 101329.
https://doi.org/10.1016/j.molmet.2021.101329
[11] Calissi, G., Lam, E.W.-F. and Link, W. (2021) Therapeutic Strategies Targeting FOXO Transcription Factors. Nature Reviews Drug Discovery, 20, 21-38.
https://doi.org/10.1038/s41573-020-0088-2
[12] Jeffery, N. and Harries, L.W. (2016) β-Cell Differentiation Status in Type 2 Diabetes. Diabetes, Obesity and Metabolism, 18, 1167-1175.
https://doi.org/10.1111/dom.12778
[13] Salinno, C., Büttner, M., Cota, P., Tritschler, S., Tarquis-Medina, M., et al. (2021) CD81 Marks Immature and Dedifferentiated Pancreatic β-Cells. Molecular Metabolism, 49, Article ID: 101188.
https://doi.org/10.1016/j.molmet.2021.101188
[14] Christensen, A.A. and Gannon, M. (2019) The Beta Cell in Type 2 Diabetes. Current Diabetes Reports, 19, 81.
https://doi.org/10.1007/s11892-019-1196-4
[15] Yan, Z., Fortunato, M., Shyr, Z.A., Clark, A.L., Fuess, M., et al. (2022) Genetic Reduction of Glucose Metabolism Preserves Functional β-Cell Mass in KATP-Induced Neonatal Diabetes. Diabetes, 71, 1233-1245.
https://doi.org/10.2337/db21-0992
[16] Lebreton, F., Lavallard, V., Bellofatto, K., Bonnet, R., Wassmer, C.H., et al. (2019) Insulin-Producing Organoids Engineered from Islet and Amniotic Epithelial Cells to Treat Diabetes. Nature Communications, 10, 4491.
https://doi.org/10.1038/s41467-019-12472-3
[17] Nimkulrat, S.D., Bernstein, M.N., Ni, Z., Brown, J., Kendziorski, C., et al. (2021) The Anna Karenina Model of β-Cell Maturation in Development and Their Dedifferentiation in Type 1 and Type 2 Diabetes. Diabetes, 70, 2058-2066.
https://doi.org/10.2337/db21-0211
[18] Ma, X., Lu, Y., Zhou, Z., Li, Q., Chen, X., et al. (2022) Human Expandable Pancreatic Progenitor-Derived β Cells Ameliorate Diabetes. Science Advances, 8, eabk1826.
https://doi.org/10.1126/sciadv.abk1826
[19] Boland, B.B., Brown, C., Boland, M.L., Cann, J., Sulikowski, M., et al. (2019) Pancreatic β-Cell Rest Replenishes Insulin Secretory Capacity and Attenuates Diabetes in an Extreme Model of Obese Type 2 Diabetes. Diabetes, 68, 131-140.
https://doi.org/10.2337/db18-0304
[20] Wang, J., Wang, D., Chen, X., Yuan, S., Bai, L., et al. (2022) Isolation of Mouse Pancreatic Islet Procr+ Progenitors and Long-Term Expansion of Islet Organoids in Vitro. Nature Protocols, 17, 1359-1384.
https://doi.org/10.1038/s41596-022-00683-w
[21] Jørgensen, M.C., Ahnfelt-Rønne, J., Hald, J., Madsen, O.D., Serup, P., et al. (2007) An Illustrated Review of Early Pancreas Development in the Mouse. Endocrine Reviews, 28, 685-705.
https://doi.org/10.1210/er.2007-0016
[22] Brissova, M., et al. (2005) Assessment of Human Pancreatic Islet Architecture and Composition by Laser Scanning Confocal Microscopy. Journal of Histochemistry & Cytochemistry, 53, 1087-1097.
[23] Lin, C.-L.V. and Vuguin, P.M. (2012) Determinants of Pancreatic Islet Development in Mice and Men: A Focus on the Role of Transcription Factors. Hormone Research in Paediatrics, 77, 205-213.
https://doi.org/10.1159/000337219
[24] Edlund, H. (2001) Section 1: NL-Cell Differentiation and Growth. 50.
[25] Afelik, S. and Jensen, J. (2013) Notch Signaling in the Pancreas: Patterning and Cell Fate Specification. WIREs Developmental Biology, 2, 531-544.
https://doi.org/10.1002/wdev.99
[26] Afelik, S., Qu, X., Hasrouni, E., Bukys, M.A., Deering, T., et al. (2012) Notch-Mediated Patterning and Cell Fate Allocation of Pancreatic Progenitor Cells. Development, 139, 1744-1753.
https://doi.org/10.1242/dev.075804
[27] Magenheim, J., Klein, A.M., Stanger, B.Z., Ashery-Padan, R., Sosa-Pineda, B., et al. (2011) Ngn3+ Endocrine Progenitor Cells Control the Fate and Morphogenesis of Pancreatic Ductal Epithelium. Developmental Biology, 359, 26-36.
https://doi.org/10.1016/j.ydbio.2011.08.006
[28] Fernandez-Ruiz, R., García-Alamán, A., Esteban, Y., Mir-Coll, J., Serra-Navarro, B., et al. (2020) Tra. Nature Communications, 11, 5982.
https://doi.org/10.1038/s41467-020-19657-1
[29] Moin, A.S.M. and Butler, A.E. (2019) Alterations in Beta Cell Identity in Type 1 and Type 2 Diabetes. Current Diabetes Reports, 19, 83.
https://doi.org/10.1007/s11892-019-1194-6
[30] Oberhauser, L., Jiménez-Sánchez, C., Madsen, J.G.S., Duhamel, D., Mandrup, S., et al. (2022) Glucolipotoxicity Promotes the Capacity of the Glycerolipid/NEFA Cycle Supporting the Secretory Response of Pancreatic Beta Cells. Diabetologia, 65, 705-720.
https://doi.org/10.1007/s00125-021-05633-x
[31] Oberhauser, L. and Maechler, P. (2021) Lipid-Induced Adaptations of the Pancreatic Beta-Cell to Glucotoxic Conditions Sustain Insulin Secretion. International Journal of Molecular Sciences, 23, 324.
https://doi.org/10.3390/ijms23010324
[32] Zhang, I.X., Raghavan, M. and Satin, L.S. (2020) The Endoplasmic Reticulum and Calcium Homeostasis in Pancreatic Beta Cells. Endocrinology, 161, bqz028.
https://doi.org/10.1210/endocr/bqz028
[33] Cunha, D.A., Hekerman, P., Ladrière, L., Bazarra-Castro, A., Ortis, F., et al. (2008) Initiation and Execution of Lipotoxic ER Stress in Pancreatic β-Cells. Journal of Cell Science, 121, 2308-2318.
https://doi.org/10.1242/jcs.026062
[34] Cnop, M., Ladrière, L., Igoillo-Esteve, M., Moura, R.F. and Cunha, D.A. (2010) Causes and Cures for Endoplasmic Reticulum Stress in Lipotoxic β-Cell Dysfunction. Diabetes, Obesity and Metabolism, 12, 76-82.
https://doi.org/10.1111/j.1463-1326.2010.01279.x
[35] Li, N., Frigerio, F. and Maechler, P. (2008) The Sensitivity of Pancreatic β-Cells to Mitochondrial Injuries Triggered by Lipotoxicity and Oxidative Stress. Biochemical Society Transactions, 36, 930-934.
https://doi.org/10.1042/BST0360930
[36] Wysham, C. and Shubrook, J. (2020) Beta-Cell Failure in Type 2 Diabetes: Mechanisms, Markers, and Clinical Implications. Postgraduate Medicine, 132, 676-686.
https://doi.org/10.1080/00325481.2020.1771047
[37] Escribano-López, I., de Marañon, A.M., Iannantuoni, F., López-Domènech, S., Abad-Jiménez, Z., et al. (2019) The Mitochondrial Antioxidant SS-31 Modulates Oxidative Stress, Endoplasmic Reticulum Stress, and Autophagy in Type 2 Diabetes. Journal of Clinical Medicine, 8, 1322.
https://doi.org/10.3390/jcm8091322
[38] Yuan, Y., Zhou, J., Hu, R., Zou, L., Ji, L., et al. (2021) Piperine Protects against Pancreatic β-Cell Dysfunction by Alleviating Macrophage Inflammation in Obese Mice. Life Sciences, 274, Article ID: 119312.
https://doi.org/10.1016/j.lfs.2021.119312
[39] Inaishi, J. and Saisho, Y. (2020) Beta-Cell Mass in Obesity and Type 2 Diabetes, and Its Relation to Pancreas Fat: A Mini-Review. Nutrients, 12, 3846.
https://doi.org/10.3390/nu12123846
[40] Saisho, Y. (2019) Changing the Concept of Type 2 Diabetes: Beta Cell Workload Hypothesis Revisited. Endocrine, Metabolic & Immune Disorders Drug Targets, 19, 121-127.
https://doi.org/10.2174/1871530318666180821161825
[41] Poitout, V. and Robertson, R.P. (2008) Glucolipotoxicity: Fuel Excess and β-Cell Dysfunction. Endocrine Reviews, 29, 351-366.
https://doi.org/10.1210/er.2007-0023
[42] Marasco, M.R. and Linnemann, A.K. (2018) β-Cell Autophagy in Diabetes Pathogenesis. Endocrinology, 159, 2127- 2141.
https://doi.org/10.1210/en.2017-03273
[43] Muralidharan, C. and Linnemann, A.K. (2021) β-Cell Autophagy in the Pathogenesis of Type 1 Diabetes. American Journal of Physiology-Endocrinology and Metabolism, 321, E410-E416.
https://doi.org/10.1152/ajpendo.00151.2021
[44] Masjkur, J., Arps-Forker, C., Poser, S.W., Nikolakopoulou, P., Toutouna, L., et al. (2014) Hes3 Is Expressed in the Adult Pancreatic Islet and Regulates Gene Expression, Cell Growth, and Insulin Release. The Journal of Biological Chemistry, 289, 35503-35516.
https://doi.org/10.1074/jbc.M114.590687
[45] Masjkur, J., Poser, S.W., Nikolakopoulou, P., Chrousos, G., McKay, R.D., et al. (2016) Endocrine Pancreas Development and Regeneration: Noncanonical Ideas from Neural Stem Cell Biology. Diabetes, 65, 314-330.
https://doi.org/10.2337/db15-1099
[46] Seymour, P.A., Collin, C.A., Egeskov-Madsen, A.R., Jørgensen, M.C., Shimojo, H., et al. (2020) Jag1 Modulates an Oscillatory Dll1-Notch-Hes1 Signaling Module to Coordinate Growth and Fate of Pancreatic Progenitors. Developmental Cell, 52, 731-747.e8.
https://doi.org/10.1016/j.devcel.2020.01.015
[47] Zheng, L. and Conner, S.D. (2018) Glycogen Synthase Kinase 3β Inhibition Enhances Notch1 Recycling. Molecular Biology of the Cell, 29, 389-395.
https://doi.org/10.1091/mbc.E17-07-0474
[48] Liu, C., Xu, X., Gao, J., Zhang, T. and Yang, Z. (2016) Hydrogen Sulfide Prevents Synaptic Plasticity from VD-In- duced Damage via Akt/GSK-3β Pathway and Notch Signaling Pathway in Rats. Molecular Neurobiology, 53, 4159- 4172.
https://doi.org/10.1007/s12035-015-9324-x
[49] Espinosa, L., Inglés-Esteve, J., Aguilera, C. and Bigas, A. (2003) Phosphorylation by Glycogen Synthase Kinase-3β Down-Regulates Notch Activity, a Link for Notch and Wnt Pathways. Journal of Biological Chemistry, 278, 32227- 32235.
https://doi.org/10.1074/jbc.M304001200
[50] Zhu, Z., Chen, X., Xiao, Y., Wen, J., Chen, J., et al. (2019) Gestational Diabetes Mellitus Alters DNA Methylation Profiles in Pancreas of the Offspring Mice. Journal of Diabetes and Its Complications, 33, 15-22.
https://doi.org/10.1016/j.jdiacomp.2018.11.002
[51] Blum, B., Roose, A.N., Barrandon, O., Maehr, R., Arvanites, A.C., et al. (2014) Reversal of β Cell De-Differentiation by a Small Molecule Inhibitor of the TGFβ Pathway. eLife, 3, e02809.
https://doi.org/10.7554/eLife.02809
[52] Wang, H.-L., Wang, L., Zhao, C.-Y. and Lan, H.-Y. (2022) Role of TGF-Beta Signaling in Beta Cell Proliferation and Function in Diabetes. Biomolecules, 12, 373.
https://doi.org/10.3390/biom12030373
[53] Toren-Haritan, G. and Efrat, S. (2015) TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded in Vitro. PLOS ONE, 10, e0139168.
https://doi.org/10.1371/journal.pone.0139168
[54] Ji, J., Qian, L., Zhu, Y., Wu, Y., Guo, J., et al. (2020) Serpina3c Protects against High-Fat Diet-Induced Pancreatic Dysfunction through the JNK-Related Pathway. Cellular Signalling, 75, Article ID: 109745.
https://doi.org/10.1016/j.cellsig.2020.109745
[55] Kim-Muller, J.Y., Kim, Y.J.R., Fan, J., Zhao, S., Banks, A.S., et al. (2016) FoxO1 Deacetylation Decreases Fatty Acid Oxidation in β-Cells and Sustains Insulin Secretion in Diabetes. Journal of Biological Chemistry, 291, 10162-10172.
https://doi.org/10.1074/jbc.M115.705608
[56] Xu, Y., Tang, Z., Dai, H., Hou, J., Li, F., et al. (2022) MiR-195 Promotes Pancreatic β-Cell Dedifferentiation by Targeting Mfn2 and Impairing Pi3k/Akt Signaling in Type 2 Diabetes. Obesity, 30, 447-459.
https://doi.org/10.1002/oby.23360
[57] Skelin, M., Rupnik, M. and Cencič, A. (2010) Pancreatic Beta Cell Lines and Their Applications in Diabetes Mellitus Research. ALTEX Alternatives to Animal Experimentation, 27, 105-113.
https://doi.org/10.14573/altex.2010.2.105
[58] Moreno-Amador, J.L., Téllez, N., Marin, S., Aloy-Reverté, C., Semino, C., et al. (2018) Epithelial to Mesenchymal Transition in Human Endocrine Islet Cells. PLOS ONE, 13, e0191104.
https://doi.org/10.1371/journal.pone.0191104
[59] Al-Masri, M., Krishnamurthy, M., Li, J., Fellows, G.F., Dong, H.H., et al. (2010) Effect of Forkhead Box O1 (FOXO1) on Beta Cell Development in the Human Fetal Pancreas. Diabetologia, 53, 699-711.
https://doi.org/10.1007/s00125-009-1632-0
[60] Russ, H.A., Ravassard, P., Kerr-Conte, J., Pattou, F. and Efrat, S. (2009) Epithelial-Mesenchymal Transition in Cells Expanded in Vitro from Lineage-Traced Adult Human Pancreatic Beta Cells. PLOS ONE, 4, e6417.
https://doi.org/10.1371/journal.pone.0006417
[61] Neelankal, J.A., Morahan, G. and Jiang, F.-X. (2017) Incomplete Re-Expression of Neuroendocrine Progenitor/Stem Cell Markers Is a Key Feature of β-Cell Dedifferentiation. Journal of Neuroendocrinology, 29.
https://doi.org/10.1111/jne.12450
[62] Ma, X., Gao, F., Chen, Q., Xuan, X., Wang, Y., et al. (2020) ACE2 Modulates Glucose Homeostasis through GABA Signaling during Metabolic Stress. Journal of Endocrinology, 246, 223-236.
https://doi.org/10.1530/JOE-19-0471
[63] Li, F., Nitteranon, V., Tang, X., Liang, J., Zhang, G., et al. (2012) In Vitro Antioxidant and Anti-Inflammatory Activities of 1-dehydro-[6]-gingerdione, 6-shogaol, 6-dehydroshogaol and Hexahydrocurcumin. Food Chemistry, 135, 332-337.
https://doi.org/10.1016/j.foodchem.2012.04.145
[64] 程瑞婷, 王晨斌, 田春雨, 高秀娟, 吴晨曦, 等. MIN6细胞损伤模型不同造模方法对比研究[J]. 华北理工大学学报(医学版), 2017, 19(4): 258-262.
[65] 刘玉溥, 吕庆国, 和童南伟, 等. 大鼠胰岛β细胞分离与原代培养方法探讨[J]. 四川大学学报(医学版), 2009, 40(1): 153-156.
[66] Cinti, F., Bouchi, R., Kim-Muller, J.Y., Ohmura, Y., Sandoval, P.R., et al. (2016) Evidence of β-Cell Dedifferentiation in Human Type 2 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 101, 1044-1054.
https://doi.org/10.1210/jc.2015-2860
[67] Diedisheim, M., Oshima, M., Albagli, O., Huldt, C.W., Ahlstedt, I., et al. (2018) Modeling Human Pancreatic Beta Cell Dedifferentiation. Molecular Metabolism, 10, 74-86.
https://doi.org/10.1016/j.molmet.2018.02.002
[68] Pastore, D., Della-Morte, D., Capuani, B., Lombardo, M.F., et al. (2017) FGF-2b and h-PL Transform Duct and Non- Endocrine Human Pancreatic Cells into Endocrine Insulin Secreting Cells by Modulating Differentiating Genes. International Journal of Molecular Sciences, 18, 2234.
https://doi.org/10.3390/ijms18112234
[69] de Jesus, D.S., Mak, T.C.S., Wang, Y.-F., von Ohlen, Y., Bai, Y., et al. (2021) Dysregulation of the Pdx1/Ovol2/Zeb2 Axis in Dedifferentiated β-Cells Triggers the Induction of Genes Associated with Epithelial-Mesenchymal Transition in Diabetes. Molecular Metabolism, 53, Article ID: 101248.
https://doi.org/10.1016/j.molmet.2021.101248
[70] Chen, H., Zhou, W., Ruan, Y., Yang, L., Xu, N., et al. (2018) Reversal of Angiotensin ll-Induced β-Cell Dedifferentiation via Inhibition of NF-κb Signaling. Molecular Medicine, 24, 43.
https://doi.org/10.1186/s10020-018-0044-3
[71] Hu, X., Liu, Z., Lu, Y., Chi, X., Han, K., et al. (2022) Glucose Metabolism Enhancement by 10-Hydroxy-2-Decenoic Acid via the PI3K/AKT Signaling Pathway in High-Fat-Diet/Streptozotocin Induced Type 2 Diabetic Mice. Food & Function, 13, 9931-9946.
https://doi.org/10.1039/D1FO03818D
[72] Ilegems, E., Bryzgalova, G., Correia, J., Yesildag, B., Berra, E., et al. (2022) HIF-1α Inhibitor PX-478 Preserves Pancreatic β Cell Function in Diabetes. Science Translational Medicine, 14, eaba9112.
https://doi.org/10.1126/scitranslmed.aba9112
[73] Zhang, C., Deng, J., Liu, D., Tuo, X., Xiao, L., et al. (2018) Nuciferine Ameliorates Hepatic Steatosis in High-Fat Diet/Streptozocin-Induced Diabetic Mice through a PPARα/PPARγ Coactivator-1α Pathway. British Journal of Pharmacology, 175, 4218-4228.
https://doi.org/10.1111/bph.14482
[74] Lee, K., Chan, J.Y., Liang, C., Ip, C.K., Shi, Y.-C., et al. (2022) XBP1 Maintains Beta Cell Identity, Represses Beta-to-Alpha Cell Transdifferentiation and Protects against Diabetic Beta Cell Failure during Metabolic Stress in Mice. Diabetologia, 65, 984-996.
https://doi.org/10.1007/s00125-022-05669-7
[75] Kahn, S.E., Cooper, M.E. and Del Prato, S. (2014) Pathophysiology and Treatment of Type 2 Diabetes: Perspectives on the Past, Present, and Future. The Lancet, 383, 1068-1083.
https://doi.org/10.1016/S0140-6736(13)62154-6
[76] 何风英, 孙琳楠, 王玉洁, 杨孟迪, 丁雨露, 等. T2DM胰岛β细胞去分化相关转录因子的研究进展[J]. 医学研究杂志, 2022, 51(8): 173-176.
[77] Zalokar, M. and Sardet, C. (1984) Tracing of Cell Lineage in Embryonic Development of Phallusia mammillata (Ascidia) by Vital Staining of Mitochondria. Developmental Biology, 102, 195-205.
https://doi.org/10.1016/0012-1606(84)90184-2
[78] Schulz, T.J., Glaubitz, M., Kuhlow, D., Thierbach, R., Birringer, M., et al. (2007) Variable Expression of Cre Recombinase Transgenes Precludes Reliable Prediction of Tissue-Specific Gene Disruption by Tail-Biopsy Genotyping. PLOS ONE, 2, e1013.
https://doi.org/10.1371/journal.pone.0001013
[79] He, L., Pu, W., Liu, X., Zhang, Z., Han, M., et al. (2021) Proliferation Tracing Reveals Regional Hepatocyte Generation in Liver Homeostasis and Repair. Science, 371, eabc4346.
https://doi.org/10.1126/science.abc4346