生物制剂治疗银屑病及在相关皮肤病中的研究进展
Research Progress of Biologics in the Treat-ment of Psoriasis and Related Skin Diseases
DOI: 10.12677/ACM.2023.1361433, PDF, HTML, XML, 下载: 155  浏览: 321 
作者: 魏子芝:青海大学研究生院,青海?西宁 ;郭 砚*:青海大学附属医院皮肤性病科,青海?西宁
关键词: 生物制剂炎症细胞因子白细胞介素12、23、17、22皮肤病综述Biologics Inflammatory Cytokine Interleukin 12 23 17 22 Dermatosis Review
摘要: 银屑病作为炎症性和系统性疾病,它具有起病慢和易复发的特点,遗传、免疫和环境三种因素共同作用介导了银屑病的发生。局限或广泛分布的鳞屑样红斑或斑块为其典型的临床表现。银屑病的治疗包括外用药物、系统药物、物理治疗以及生物制剂,这些治疗主要改善其症状来提高患者的生活质量。目前很多临床试验表明,对于常规系统治疗无效或耐受性差的中至重度银屑病和(或)银屑病性关节炎患者可使用生物制剂,为患者能够带来持久疗效、长期安全和使用便捷等。生物制剂主要是针对炎症细胞因子,如TNF-α、IL-12/23和IL-17A等发挥作用的,也就是主要的免疫因素,阻断其发展,疗效显著。主要的生物制剂有乌司奴单抗、司库奇尤单抗、利妥昔单抗等,目前一些新的数据表明,生物制剂对共同炎症细胞因子的疾病也是有效果的,如寻常型天疱疮、玫瑰糠疹、扁平苔癣、毛发红糠疹和系统性硬化症患者是有效的。
Abstract: As an inflammatory and systemic disease, psoriasis, which induced by genetic, immune and envi-ronmental factors, it is characterized by slow onset and easy recurrence. The typical clinical mani-festations are squamous erythema or plaques, localized or widespread. Psoriasis treatment in-cludes topical medications, systemic medications, physical therapy, and biologics that improve symptoms and improve quality of life. Currently, many clinical trials have shown that biologics can be used clinically, particularly for patients with moderate to severe psoriasis and/or psoriatic ar-thritis who do not respond to conventional systemic therapy or are poorly tolerated. Biologics can bring lasting efficacy, long-term safety and ease of use for patients. Biological agents mainly target inflammatory cytokines, such as TNF-α, IL-12/23 and IL-17A, which are the main immune factors, and block their development, with significant effect. The main biologics include ulsinumab, scucci-umab, rituximab, etc. At present, some new data show that biologics are also effective for diseases with common inflammatory cytokines, such as pemphigus vulgaris, pityriasis rosea, lichenus planus, pityriasis rufuris pilaris and systemic sclerosis patients.
文章引用:魏子芝, 郭砚. 生物制剂治疗银屑病及在相关皮肤病中的研究进展[J]. 临床医学进展, 2023, 13(6): 10240-10247. https://doi.org/10.12677/ACM.2023.1361433

1. 乌司奴单抗与IL-12和IL-23

树突状细胞(dendritic cell, DC)启动免疫反应产生IL-12的能力至关重要,然而,低剂量辐射(low-dose radiation, LDR)诱导IL-12产生的分子机制,以及LDR对DC迁移能力的影响需要进一步阐明,LDR促进树突状细胞产生IL-12,导致DC活性增加,这有助于免疫系统中的LDR兴奋作用 [1] 。一些研究证明IL-12存在一个亚基(P40),过分表达IL-12p40的转基因小鼠会发生炎症性皮肤凋亡,以IL-12信号为基础,阻断重要的炎症因子成为治疗银屑病的关键 [2] 。虽然IL-6、IL-12/23和IL-17抑制剂对银屑病关节炎(psoriatic arthritis, PsA)的皮肤和关节表现都非常有效,但是在治疗中,这些治疗措施优缺点缺乏相应依据支持 [1] 。相反,γ干扰素充当中间宿主传递的细胞免疫受到IL-12的推动会加重,进一步促进银屑病的发生发展 [3] 。此外,糖皮质激素对人NK细胞的PD-1引导是重要的,糖皮质激素与IL-12、IL-15和IL-18共同作用不仅上调PDCD1转录,而且激活一个以前未被认识的转录程序,导致增强的mRNA翻译,并导致NK细胞中PD-1的量增加 [4] 。植物乳杆菌完整细胞壁(intact cell walls, ICWS)上显示的细胞壁乳酸(wall teichoic acids, WATS)是诱导IL-12分泌的关键分子,ICWs的大小和形状对肌动蛋白重塑和随后的IL-12产生有影响 [5] 。此外,脂多糖激活的MHCII产生的可溶性因子低的树突状细胞足以诱导不依赖于IL-12、IL-23和IL-18的NK细胞产生IFN-γ [6] 。Shemesh A [7] 指出在不提供IL-2或IL-15的条件下,单独的IL-12可以维持人原代NK细胞存活,但其不足以促进人NK细胞增殖。单核细胞来源的树突状细胞中CRISPR/Cas9介导的白细胞介素-1受体相关激酶3 (Interleukin-1 receptor-associated kinase 3, IRAK3)被敲除后,导致脂多糖(lipopolysaccharide, LPS)刺激下导致IL-12产生增加 [8] 。为了模拟局部感染和刺激IL-12的产生,予以BALB/c小鼠肌肉注射LPS,在LPS给药后1小时给予Zr-DFO-αIL12示踪剂,并在5、24、48和72小时后拍摄PET图像。结果发现,与对照组相比,LPS处理的小鼠摄取量显著增加 [9] 。IL-10、IL-12、精氨酸酶1 (ARG1)和诱导型一氧化氮合酶(nitric oxide synthase, NOS)的定量聚合酶链反应分析表明,烧伤严重程度与ARG1和IL-10表达增加,一氧化氮合酶2 (nitric oxide synthase 2, NOS2)和IL-12表达减少有关 [10] 。在食品级(FG)培养基上培养的乳酸菌(Lactic acid bacteria, LAB)与在标准LAB培养基上培养的LAB的生长和功能,发现在FG培养基中培养的LAB具有更小的细胞尺寸和更高的产量,并且具有更高的体外诱导小鼠脾细胞产生IL-12 (p40)的能力 [11] 。总之,Atg5在肠髓细胞中的表达作为一种抗炎制动器来调节IL-12,从而防止生态失调和不受控制的IFNγ驱动的皮肤炎症 [12] 。

IL-23是由DCs产生的促炎细胞因子,DCs促进炎症免疫激活过程是由IL-23的产生主导的。IL-23由两个亚单位组成,IL23A (IL-23p19)和IL12B (IL-12p40) [13] 。白细胞介素(IL-)23是控制TH17发育的核心细胞因子,如果IL-23信号传导异常会发生一些自身免疫性疾病。除此以为,GWAS研究确定了IL-23受体中的几个单核苷酸多态性(Single nucleotide polymorphisms, SNPs),它们都与免疫性疾病相关 [14] 。生物活性形式的IL-23在各种DC和巨噬细胞中很快复制,这说明了IL-23这种细胞因子在银屑病的进展中扮演重要角色 [15] 。IL-23因与辅助性T17细胞诱导和调节在这银屑病的发病机理中的作用,如IL-23和IL-17的分泌可导致角质细胞和潜在滑膜细胞的过度增殖,从而使得皮肤和关节中细胞增殖和炎症的恶性循环 [16] 。IL-12和IL-23具有重要的生物学功能,它们的存在会引起身体对细菌和病毒感染的反应,通过细胞因子对T细胞功能的调节来主导肿瘤的发生发展,它既有治疗的益处,同时和促炎过程一样,因此使用生物抑制剂时必须谨慎,严格掌握适应症,如果罕见的先天性IL-12/23缺乏,机体会出现严重的感染 [17] 。Ustekinumab靶向IL-12/IL-23-p40亚单位并抑制1和17型T细胞反应。虽说ustekinumab在短期和长期治疗中都是有效果的,但机体之间的治疗反应差异性很大,HLA-Cw6的SNP模式的差异+或HLA-Cw6-还解释了对ustekinumab反应高或低的个体 [18] 。IL-23阻断受损TRM17细胞增殖,其不作用于凋亡敏感性组织。白色念珠菌感染后皮肤维持T + RM17所必需的IL-23是CD301b髓细胞产生的,CD301b细胞也是咪喹莫特皮炎发展过程中T + RM17扩增所必需的,表明局部产生的IL-23促进皮肤T细胞的原位增殖,并且为银屑病治疗中阻断IL-23提供理论支持 [19] 。IL-23是由树突细胞和巨噬细胞分泌的异二聚体促炎细胞因子,属于IL-12家族,是参与保护性免疫反应的关键细胞因子和上游细胞调节因子,刺激下游效应物如Th17细胞的分化和增殖 [20] 。免疫和基质细胞之间的相互作用对细胞因子的产生及其受体的表达至关重要,基质细胞的产生对IL-23的产生及其受体表达也有很大的作用,这样的差距可以解释治疗反应的异质性 [21] 。

IL-12和IL-23这两种天然存在的蛋白质在调节免疫系统中作用很重要,他们具有共同亚基p40,乌司奴单抗(ustekinumab stelara)作为生物制剂,它是新型的全人源靶向制剂,它可以与p40特异性结合,因而阻断Th1以及Th17细胞的分化和相关炎症反应,实现中重度银屑病的治疗 [22] 。Ustekinumab治疗中重度斑块型银屑病安全性和有效性已在3项III期临床试验、2项安慰剂对照(PHOENIX 1和2)和1项比较对照(ACCEPT)研究中进行了评估,这些研究发现对接受其他治疗后失败的个体是有利的 [23] 。 PHOENIX1 [24] 和PHOENIX2 [25] 这两项试验证实了中至重度斑块型银屑病疗程中乌司奴单抗对的有效性,在绝大多数患者人群中,每12周给药一次至少维持一年的疗效,虽然乌司奴单抗每3个月治疗一次对大多数中重度银屑病患者有效,但要将90 mg的剂量增加至每8周一次,以至于对最开始方案部分应答的患者产生完全反应。LOTUS试验 [26] 是针对乌司奴单抗在中国中度至重度斑块型银屑病的安全性及有效性评价的III期临床试验,与之前在全球3期研究中报道的结果是一致的,ustekinumab在中国中度至重度银屑病患者中治疗36周非常有效且耐受性良好。一个III期随机对照试验ACCEPT试验 [27] 观察乌司奴单抗和依那西普治疗银屑病的疗效,结果显示:45或90 mg治疗量的乌司奴单抗的效果比12周的高剂量依那西普明显,对于依那西普治疗无效的患者可以转用乌司奴单抗。Ustekinumab能够显著改善指银屑病伴有甲损害,在接受维持治疗的患者中,改善随着时间的推移而持续,直到治疗长达至少1年 [28] 。乌司奴单抗能够显著改善活动期银屑病关节炎,并可能为已批准的生物治疗提供了一种替代治疗机制,疗效稳定且持续时间较长 [29] 。白细胞介素-12/23抑制剂ustekinumab (45/90 mg,q12周)在不同的PsA活动期患者群体中表现出显著和持续的PsA体征/症状改善,接受治疗1年后其影像学进展得到明显抑制 [30] 。

在过去的十几年间,新的治疗方式如生物制剂出现并广泛应用,例如最先在我国获批用于治疗银屑病的TNF-α抑制剂。随着研究的深入,IL-12、IL-23、IL-17等作为新的靶分子,把针对靶向分子的新型靶向生物制剂应用于临床,其中就包括乌司奴单抗,为临床一线银屑病的治疗提供新方案,带给银屑病患者更多希望。

2. 司库奇尤单抗与IL-17

Th17/IL-17分子轴被认为在银屑病的发病机制中非常重要,并且IL-17在维持引起银屑病的免疫及炎症改变中起基本作用,并且发现IL-17A、IL-17F和IL-17C的表达在银屑病斑块中呈现剧烈增加的状态 [31] 。有效的治疗会促使多种基因(包括IL-17下游的效应细胞因子和趋化因子)的表达逐渐恢复到靠近正常水平 [31] 。Th17产生的一类炎症细胞因子白介素-17 (IL-17),可通过直接或间接诱导多种炎症细胞和趋化因子参与免疫炎症反应 [32] 。IL-17A、IL-17B、IL-17C、IL-17D、IL-17E (又称IL-25)和IL-17F [33] [34] 这6名成员属于IL-17家族。相比正常皮肤,在银屑病相关皮损部位中CD4+ Th17细胞比例明显提升,这些Th17细胞促进IFN-γ的产生,针对皮损处的免疫染色化验显示IL-17A阳性细胞数量也显著增加,治疗后在相关皮损处CD4+ Th17细胞的计数较治疗前显著降低 [35] 。IL-17(+)肥大细胞和中性粒细胞在人类皮肤中占据主要细胞类型,研究也发现IL-17(+)肥大细胞和中性粒细胞的比例在银屑病皮损处要高于IL-17(+) T细胞,它们释放的IL-17可能是银屑病发病机制的核心,代表了IL-23-IL-17轴介导宿主防御和自身免疫的基本机制 [36] 。

司库奇尤单抗——全球第一个全人源性的抗IL-17A单克隆抗体,具有高亲和性,可以特异性结合IL-17A,同时能够弱化细胞炎症因子的生物活性,Secukinumab在中度至重度银屑病(moderate-to-severe psoriasis, PsO)、银屑病关节炎和强直性脊柱炎(ankylosing spondylitis, AS)的患者中长期治疗中表现出良好的安全性 [37] 。临床试验表明司库奇尤单抗疗程达12 w后,80%银屑病患者皮损面积及严重程度指数(Psoriasis Area and Severity Index, PASI)达到75%的缓解,而且能够明显提升患者的生活质量,并且在治疗中度至重度银屑病时,在第48周显示出基于PASI90的较长期疗效 [38] 。Secukinumab不会增加终末器官毒性、感染、多发性硬化、潜伏性结核病或乙型肝炎、白血病/淋巴瘤和非黑色素瘤皮肤癌的风险,皮肤粘膜念珠菌病是常见的副作用,在secukinoumab 300 mg时,平均1年每100名就医者中感染率为3.55人次,但这些感染通常不会影响secukinoumab治疗的维持状态 [39] 。虽然经secukinumab治疗后疾病活动程度有所变好,但肥胖和高甘油三酯血症仍存,因此在secukinumab治疗期间,建议对患者进行健康教育,定期检测血脂,并且适度运动以控制体重 [40] 。在老年人群中,司库奇尤单抗对中至重度斑块状银屑病的效果显著,安全系数高,而且对肝脏酶学指标以及血清代谢学指标的影响也较低,可以用于老年中重度斑块状银屑病患者治疗。

3. 利妥昔单抗联合短期泼尼松与寻常型天疱疮

寻常型天疱疮(pemphigus vulgaris, PV)是一种罕见的以疼痛和起疱为主要临床表现的自身免疫性粘膜皮肤疾病,常发生在中青年人身上。口腔损害通常早于皮肤损害,且更难以治疗 [41] 。在活动性PV中,Th1和Th17主要参与该疾病的发生及发展,而Th2途径被阻断,Treg途径可能作为Th1和Th17途径的拮抗剂,这将使得疾病局部化 [42] 。绝大部分患者仅有口腔病变,女性患病率明显高于男性,女性疼痛也较明显,剧烈疼痛在女性和老年患者比较常见,即便进行了有效的治疗,预后也非常不理想 [43] 。PV是一种自身免疫性疱病,特征在于针对桥粒粘附分子桥粒芯糖蛋白(desmosomal adhesion molecules desmoglein, DSG) 3和DSG1的IgG自身抗体,DSG特异性IgG自身抗体结合后导致水疱形成的潜在机制目前不清楚,研究表明IgG自身抗体结合DSG3胞外域的氨基末端区域1 (aminoterminal region 1, EC1)可以诱导疾病的发生,但是寻常型天疱疮中的自体抗体是多克隆的,包括了DSG3胞外域氨基末端和膜近端表位的IgG [44] 。异常的SOCS3/STAT通路激活与许多自身免疫性疾病有关,CD3 T细胞低SOCS4表达导致STA过度激活,使得CD4+ T细胞分化为Th1和Th17细胞,PV-IgG诱导的皮损处局部炎症(由IFN-γ和IL-6介导)会加重,CD3 T细胞中SOCS4的低表达进一步加剧了PV-IgG诱导的棘层分解 [45] 。抗线粒体抗体(antimitochondrial antibodies, AMA)造成的线粒体损伤已被证实是这一过程中的关键环节,AMA在PV的发病机制中与其他自身抗体具有协同作用,AMA的吸收抑制了PV-IgGs引起水泡的能力,保护线粒体功能的药物制剂成为了一种新的靶向方法 [46] 。多项研究表明,针对细胞因子的治疗方法在寻常型天疱疮中具有较好的疗效。

单克隆抗体利妥昔单抗(Rituximab, RTX)具有识别和结合CD-20抗原的能力,导致B细胞死亡,因此可以减少致病性自身抗体,越来越多的数据表明其对天疱疮的治疗作用逐渐增加,但是最初被禁用于难治性或复发性天疱疮患者以及系统性皮质类固醇禁忌症患者 [47] 。试验数据表明,临床一线应用利妥昔单抗联合短期泼尼松治疗天疱疮患者比单独使用泼尼松疗效更好,且不良事件更少 [48] 。30项研究共纳入578名天疱疮患者,76%的患者在1个RTX周期后能够达到完全缓解,缓解时间为5.8个月,缓解持续时间为14.5个月,复发率为40%,18名患者(3.3%)出现了严重的不良反应,RTX疗法在治疗天疱疮方面有效且耐受性较好,但是,方案的选择取决于个体患者的整体状况 [49] 。血浆置换也能够清除血液中的致病性自身抗体,以至于减轻病情活动程度,有研究发现联合应用血浆置换较传统方法更能降低循环中自身抗体 [50] 。糖皮质激素联合利妥昔单抗较单用糖皮质激素更有助于减少激素总用量,即利妥昔单抗可能有类固醇样效应,糖皮质激素联合利妥昔单抗较单独口服糖皮质激素治疗天疱疮更有助于病情缓解,由于研究数量有限,糖皮质激素联合辅助疗法治疗天疱疮的确切疗效和安全性仍需要大量数据支持。

4. 小结

近年来,各种炎症细胞因子研究技术进一步发展,因此针对这些细胞因子的很多靶向药物也随之出现,同时也解决了很多临床难题,一些常见病经过一般治疗无效采取靶向治疗取得了很好的临床疗效,同时缓解了患者的心理负担,改善了其生活质量,目前仍需要探索各种疾病的发病机制及免疫机理,需要更加深入的研究完善,从而为临床疾病的治疗提供新思路。

NOTES

*通讯作者。

参考文献

[1] Yu, N., Wang, S., Song, X., et al. (2018) Low-Dose Radiation Promotes Dendritic Cell Migration and IL-12 Production via the ATM/NF-κB Pathway. Radiation Research, 189, 409-417.
https://doi.org/10.1667/RR14840.1
[2] 李静. 银屑平丸对银屑病样小鼠模型血清中IL-4和IL-12表达水平的影响[D]: [硕士学位论文]. 长沙: 湖南中医药大学, 2022.
https://doi.org/10.27138/d.cnki.ghuzc.2022.000411
[3] 张良芬, 吴勤学, 王群. 银屑病患者血清中细胞因子状态的研究[J]. 中华皮肤科杂志, 2001, 34(2): 101-102.
[4] Quatrini, L.,Vacca, P., Tumino, N., et al. (2021) Glucocorticoids and the Cytokines IL-12, IL-15, and IL-18 Present in the Tumor Microenvironment Induce PD-1 Ex-pression on Human Natural Killer Cells. Journal of Allergy and Clinical Immunology, 147, 349-360.
https://doi.org/10.1016/j.jaci.2020.04.044
[5] Naoya, K., Shohei, K., Shin, H., et al. (2022) Walls Teichoic Ac-id-Dependent Phagocytosis of Intact Cell Walls of Lactiplantibacillus plantarumwall Elicits IL-12 Secretion from Mac-rophages. Frontiers in Microbiology, 13, Article 986396.
https://doi.org/10.3389/fmicb.2022.986396
[6] Kaveh, A., Karen, L., Mehrnoosh, A., Elizabeth, M.H., Larry, L., Nevil, J. and Eric, O. (2022) Dendritic Cells Trigger IFN-γ Secretion by NK Cells Independent of IL-12 and IL-18. European Journal of Immunology, 52, 1431-1440.
https://doi.org/10.1002/eji.202149733
[7] Avishai, S., Harry, P., Roybal, K.T. and Lanier, L.L. (2022) Differential IL-12 Signaling Induces Human Natural Killer Cell Activating Receptor-Mediated Ligand-Specific Expansion. Journal of Experimental Medicine, 219, e20212434.
https://doi.org/10.1084/jem.20212434
[8] Ann, R., Brown, B.S., Stofega, M., et al. (2022) Targeting IRAK3 for Degradation to Enhance IL-12 Pro-Inflammatory Cytokine Production. ACS Chemical Biology, 17, 1315-1320.
https://doi.org/10.1021/acschembio.2c00037
[9] Viola, N.T., Glassbrook, J.E., Kalluri, J.R., et al. (2022) Evalua-tion of an ImmunoPET Tracer for IL-12 in a Preclinical Model of Inflammatory Immune Responses. Frontiers in Micro-biology, 13, Article 870110.
https://doi.org/10.3389/fimmu.2022.870110
[10] Mahung, C., Stepp, W.H., Long, C., et al. (2022) Early expres-sion of IL-10, IL-12, ARG1 and NOS2 Genes in Peripheral Blood Mononuclear Cells Synergistically Correlate with Pa-tient Outcome after Burn Injury. Journal of Trauma and Acute Care Surgery, 93, 702-711.
https://doi.org/10.1097/TA.0000000000003602
[11] Kawamoto-Miyamoto, N., Hosoda, H., Miyoshi, K. and Nomoto, K. (2022) Glutamate in the Medium of Lactiplantibacillus plantarum FL-664 Affects the Production of IL-12(p40) on Murine Spleen Cells. Bioscience, Biotechnology, and Biochemistry, 86, 535-542.
https://doi.org/10.1093/bbb/zbac006
[12] Merkley, S.D., Goodfellow, S.M., Guo, Y., Wilton, Z.E.R., Byrum, J.R., Schwalm, K.C., Dinwiddie, D.L., Gullapalli, R.R., Deretic, V., Jimenez Hernandez, A., Bradfute, S.B., Julie, I.G. and Castillo, E.F. (2022) Non-Autophagy Role of Atg5 and NBR1 in Unconventional Secretion of IL-12 Prevents Gut Dysbiosis and Inflammation. Journal of Crohn’s and Colitis, 16, 259-274.
https://doi.org/10.1093/ecco-jcc/jjab144
[13] Vincken, N.L.A., Welsing, P.M.J., Silva-Cardoso, S.C., et al. (2022) Suppression of IL-12/IL-23 p40 Subunit in the Skin and Blood of Psoriasis Patients by Tofacitinib Is Dependent on Ac-tive Interferon-γ Signaling in Dendritic Cells: Implications for the Treatment Of Psoriasis and Interferon-Driven Diseases. Experimental Dermatology, 31, 962-969.
https://doi.org/10.1111/exd.14566
[14] Floss, D.M., Schröder, J., Franke, M. and Scheller, J. (2015) Insights into IL-23 Biology: From Structure to Function. Cytokine & Growth Factor Reviews, 26, 569-78.
https://doi.org/10.1016/j.cytogfr.2015.07.005
[15] Yawalkar, N., Tscharner, G.G., Hunger, R.E. and Hassan, A.S. (2009) Increased Expression of IL-12p70 and IL-23 by Multiple Dendritic Cell and Macrophage Subsets in Plaque Pso-riasis. Journal of Dermatological Science, 54, 99-105.
https://doi.org/10.1016/j.jdermsci.2009.01.003
[16] Nograles, K.E., Brasington, R.D. and Bowcock, A.M. (2009) New Insights into the Pathogenesis and Genetics of Psoriatic Arthritis. Nature Clinical Practice Rheumatology, 5, 83-91.
https://doi.org/10.1016/j.jdermsci.2009.01.003
[17] Schurich, A., Raine, C., Morris, V. and Ciurtin, C. (2018) The Role of IL-12/23 in T Cell-Related Chronic Inflammation: Implications of Immunodeficiency and Therapeutic Blockade. Rheumatology, 57, 246-254.
https://doi.org/10.1093/rheumatology/kex186
[18] Morelli, M., Galluzzo, M., Scarponi, C., et al. (2022) Allelic Variants of HLA-C Upstream Region, PSORS1C3, MICA, TNFA and Genes Involved in Epidermal Homeostasis and Barrier Function Influence the Clinical Response to Anti-IL-12/IL-23 Treatment of Patients with Psoriasis. Vaccines, 10, Article 1977.
https://doi.org/10.3390/vaccines10111977
[19] Whitley, S., Li, M., Kashem, S.W., et al. (2022) Local IL-23 Is Required for Proliferation and Retention of Skin-Resident Memory T17 Cells. Science Immunology, 7, eabq3254.
https://doi.org/10.1126/sciimmunol.abq3254
[20] Xiong, D.-K., Shi, X., Han, M.-M., et al. (2022) The Regulatory Mechanism and Potential Application of IL-23 in Autoimmune Diseases. Frontiers in Pharmacology, 13, Article 982238.
https://doi.org/10.3389/fphar.2022.982238
[21] Noack, M. and Miossec, P. (2022) Synoviocytes and Skin Fibro-blasts Show Opposite Effects on IL-23 Production and IL-23 Receptor Expression during Cell Interactions with Immune Cells. Arthritis Research & Therapy, 24, Article No. 220.
https://doi.org/10.1186/s13075-022-02904-9
[22] 张洋洋, 王刚. IL-12/23抑制剂乌司奴单抗在银屑病治疗中的应用[J]. 中国皮肤性病学杂志, 2020, 34(4): 454-457.
https://doi.org/10.13735/j.cjdv.1001-7089.201906105
[23] Koutruba, N., Emer, J. and Lebwohl, M. (2010) Review of Ustekinumab, an Interleukin-12 and Interleukin-23 Inhibitor Used for the Treatment of Plaque Psoriasis. Therapeutics and Clinical Risk Management, 6, 123-141.
https://doi.org/10.2147/TCRM.S5599
[24] Leonardi, C.L., Kimball, A.B., Papp, K.A., et al. (2008) Efficacy and Safety of Ustekinumab, a Human Interleukin-12/23 Monoclonal Antibody, in Patients with Psoriasis: 76-Week Results from a Randomised, Double-Blind, Placebo-Controlled Trial (PHOENIX 1). The Lancet, 371, 1665-1674.
https://doi.org/10.1016/S0140-6736(08)60725-4
[25] Papp, K.A., Langley, R.G., Lebwohl, M., et al. (2008) Effi-cacy and Safety of Ustekinumab, a Human Interleukin-12/23 Monoclonal Antibody, in Patients with Psoriasis: 52-Week Results from a Randomised, Double-Blind, Placebo-Controlled Trial (PHOENIX 2). The Lancet, 371, 1675-1684.
https://doi.org/10.1016/S0140-6736(08)60726-6
[26] Zhu, X., Zheng, M., Song, M., et al. (2013) Efficacy and Safety of Ustekinumab in Chinese Patients with Moderate to Severe Plaque-Type Psoriasis: Results from a Phase 3 Clin-ical Trial (LOTUS). Journal of Drugs in Dermatology, 12, 166-174.
[27] Griffiths, C.E.M., Strober, B.E., van de Kerkhof, P., et al. (2010) Comparison of Ustekinumab and Etanercept for Moderate-to-Severe Psoriasis. The New Eng-land Journal of Medicine, 362, 118-128.
https://doi.org/10.1056/NEJMoa0810652
[28] Rich, P., Bourcier, M., Sofen, H., Fakharzadeh, S., Wasfi, Y., Wang, Y., Kerkmann, U. Ghislain, P.-D., Poulin, Y., on Behalf of the PHOENIX 1 Investigators (2014) Ustekinumab Im-proves Nail Disease in Patients with Moderate-to-Severe Psoriasis: Results from PHOENIX 1. British Journal of Der-matology, 170, 398-407.
https://doi.org/10.1111/bjd.12632
[29] McInnes, I.B., Kavanaugh, A., Gottlieb, A.B., et al. (2013) Efficacy and Safety of Ustekinumab in Patients with Active Psoriatic Arthritis: 1 Year Results of the Phase 3, Multicentre, Double-Blind, Placebo-Controlled PSUMMIT 1 Trial. The Lancet, 382, 780-789.
https://doi.org/10.1016/S0140-6736(13)60594-2
[30] Ritchlin, C., Rahman, P., Kavanaugh, A., et al. (2014) Effi-cacy and Safety of the Anti-IL-12/23 p40 Monoclonal Antibody, Ustekinumab, in Patients with Active Psoriatic Arthritis Despite Conventional Non-Biological and Biological Anti-Tumour Necrosis Factor Therapy: 6-Month and 1-Year Re-sults of the Phase 3, Multicentre, Double-Blind, Placebo-Controlled, Randomised PSUMMIT 2 Trial. Annals of the Rheumatic Diseases, 73, 990-999.
https://doi.org/10.1136/annrheumdis-2013-204655
[31] Facheris, P., Valenti, M., Pavia, G., Elena, G., Alessandra, N., Riccardo, G. and Antonio, C. (2020) Brodalumab: A New Way to Inhibit IL-17 in Psoriasis. Dermatologic Therapy, 33, e13403.
https://doi.org/10.1111/dth.13403
[32] Guo, X.M., Mao, X.R., Tian, D., et al. (2022) Cryptococcus neoformans Infection Induces IL-17 Production by Promoting STAT3 Phosphorylation in CD4+ T Cells. Frontiers in Immunology, 13, Article ID: 872286.
https://doi.org/10.3389/fimmu.2022.872286
[33] Daudén, E., Castañeda, S., Suárez, C., et al. (2013) Clinical Practice Guideline for an Integrated Approach to Comorbidity in Patients with Psoriasis. Journal of the European Acad-emy of Dermatology and Venereology, 27, 1387-1404.
https://doi.org/10.1111/jdv.12024
[34] Wilson, N.J., Boniface, K., Chan, J.R., et al. (2007) Development, Cytokine Profile and Function of Human Interleukin 17-Producing Helper T Cells. Nature Immunology, 8, 950-957.
https://doi.org/10.1038/ni1497
[35] Miossec, P. and Kolls, J.K. (2012) Targeting IL-17 and TH17 Cells in Chronic Inflammation. Nature Reviews Drug Discovery, 11, 763-776.
https://doi.org/10.1038/nrd3794
[36] Kryczek, I., Bruce, A.T., Gudjonsson, J.E., et al. (2008) Induction of IL-17+ T Cell Trafficking and Development by IFN-Gamma: Mechanism and Pathological Relevance in Psoriasis. The Journal of Immunology, 181, 4733-4741.
https://doi.org/10.4049/jimmunol.181.7.4733
[37] Lin, A.M., Rubin, C.J., Khandpur, R., et al. (2011) Mast Cells and Neutrophils Release IL-17 through Extracellular Trap Formation in Psoriasis. The Journal of Immunology, 187, 490-500.
https://doi.org/10.4049/jimmunol.1100123
[38] Deodhar, A., Mease, P.J., McInnes, I.B., Baraliakos, X., Reich, K., Blauvelt, A., Leonardi, C., Porter, B., Das Gupta, A., Widmer, A., Pricop, L. and Fox, T. (2019) Long-Term Safety of Secukinumab in Patients with Moderate-to-Severe Plaque Psoriasis, Psoriatic Arthritis, and Ankylosing Spon-dylitis: Integrated Pooled Clinical Trial and Post-Marketing Surveillance Data. Arthritis Research & Therapy, 21, Article No. 111.
https://doi.org/10.1186/s13075-019-1882-2
[39] Reich, K., Armstrong, A.W., Langley, R.G., et al. (2019) Guselkumab versus Secukinumab for the Treatment of Moderate-to-Severe Psoriasis (ECLIPSE): Results from a Phase 3, Randomised Controlled Trial. The Lancet, 394, 831-839.
https://doi.org/10.1016/S0140-6736(19)31773-8
[40] Blauvelt, A. (2016) Safety of Secukinumab in the Treatment of Psoriasis. Expert Opinion on Drug Safety, 15, 1413-1420.
https://doi.org/10.1080/14740338.2016.1221923
[41] Wang, H.N. and Huang, Y.H. (2020) Changes in Metabolic Parameters in Psoriatic Patients Treated with Secukinumab. Therapeutic Advances in Chronic Disease, 11.
https://doi.org/10.1177/2040622320944777
[42] Goldberg, I.M., Brooks, J.K., Ghita, I., et al. (2022) Oral and Cutaneous Pemphigus Vulgaris: An Atypical Clinical Presentation. General Dentistry, 70, 22-26.
[43] Singh, P.K., Das, S., Rai, G., et al. (2022) A Snapshot of T Cell Subset Cytokines in Pemphigus Vulgaris: A Cross-Sectional Study. Cu-reus, 14, e29890.
https://doi.org/10.7759/cureus.29890
[44] Alshami, M.L., Aswad, F. and Abdullah, B. (2022) A Clinical and Demographic Analysis of Oral Pemphigus Vulgaris: A Retrospective Cross-Sectional Study from 2001 to 2021. Health Science Reports, 5, e832.
https://doi.org/10.1002/hsr2.832
[45] Hudemann, C., Exner, Y., Pollmann, R., et al. (2023) IgG against the Mem-brane-Proximal Portion of the Desmoglein 3 Ectodomain Induces Loss of Keratinocyte Adhesion, a Hallmark in Pem-phigus Vulgaris. Journal of Investigative Dermatology, 143, 254-263.
https://doi.org/10.1016/j.jid.2022.07.030
[46] Lin, X., Chen, M., Li, X., et al. (2022) Low SOCS3 Expression in CD4+ T Cells from Pemphigus Vulgaris Patients Enhanced Th1- and Th17-Cell Differentiation and Exacerbated Acan-tholysis via STAT Activation. Molecular Immunology, 150, 114-125.
https://doi.org/10.1016/j.molimm.2022.08.007
[47] Hutchison, D.M., Hosking, A.-M., Hong, E.M., et al. (2022) Mitochondrial Autoantibodies and the Role of Apoptosis in Pemphigus Vulgaris. Antibodies, 11, Article 55.
https://doi.org/10.3390/antib11030055
[48] Hebert, V. and Joly, P. (2018) Rituximab in Pemphigus. Immunother-apy, 10, 27-37.
https://doi.org/10.2217/imt-2017-0104
[49] Joly, P., Maho-Vaillant, M., Prost-Squarcioni, C., et al. (2017) First-Line Rituximab Combined with Short-Term Prednisone versus Prednisone Alone for the Treatment of Pemphigus (Ritux 3): A Prospective, Multicentre, Parallel-Group, Open-Label Randomised Trial. The Lancet, 389, 2031-2040.
https://doi.org/10.1016/S0140-6736(17)30070-3
[50] Tan-Lim, R. and Bystryn, J.C. (1990) Effect of Plasmapher-esis Therapy on Circulating Levels of Pemphigus Antibodies. Journal of the American Academy of Dermatology, 22, 35-40.
https://doi.org/10.1016/0190-9622(90)70004-2