包含时间分数阶导数与整数阶导数的一类微分方程Lie对称
Lie Symmetry of a Class of Differential Equations Involving Time Fractional Derivative and Integer Derivative
DOI: 10.12677/AAM.2023.127333, PDF, HTML, XML, 下载: 222  浏览: 283  国家自然科学基金支持
作者: 刘 慧, 银 山*:内蒙古工业大学理学院,内蒙古 呼和浩特
关键词: Lie对称分数阶微分方程Caputo分数阶约化Lie Symmetry Fractional Differential Equation Caputo Fractional Order Reduction
摘要: 针对同时含有时间整数阶导数和Caputo分数阶导数的一类常微分方程,采用Lie对称理论,给出了该分数阶微分方程的Lie对称分类。据我们所知,研究分数阶导数Lie对称的人们主要考虑包含时间分数阶导数和空间变量的整数阶导数的微分方程。为此,本文中,通过Caputo分数阶的相关性质Caputo分数阶微分方程的Lie理论,给出了所考虑的微分方程拥有的对称定理,对部分情况给出了原方程的Lie对称约化。
Abstract: For a class of ordinary differential equations containing both time integer derivative and Caputo fractional derivative, the Lie symmetry classification of the fractional differential equations is given by using the Lie symmetry theory. As far as we know, people who study fractional derivative Lie symmetry mainly consider differential equations that include fractional derivatives of time and in-teger derivatives of spatial variables. Therefore, in this paper, the symmetry theorem of the differ-ential equation under consideration is given through the Lie theory of Caputo fractional order dif-ferential equation, and the Lie symmetry reduction of the original equation is given for some cases.
文章引用:刘慧, 银山. 包含时间分数阶导数与整数阶导数的一类微分方程Lie对称[J]. 应用数学进展, 2023, 12(7): 3344-3353. https://doi.org/10.12677/AAM.2023.127333

1. 引言

分数阶微积分理论是数学理论研究的重要的分支之一。早在17世纪末,莱布尼茨给医院的一封信中第一次探讨了有关幂函数1/2阶导数的问题 [1] 。近年来,分数阶偏微分方程在描述物理,生物,化学等领域方面占有重要的地位 [2] [3] [4] 。随着分数阶导数在很多领域中被应用,迫切需要任意阶的微分和积分的理论研究。其中分数阶微分方程分为分数阶常微分方程和分数阶偏微分方程,其中分数阶偏微分方程又可以细分为时间–空间分数阶偏微分方程,时间分数阶微分方程,空间分数阶偏微分方程。在整数阶微分方程研究的基础上,用分数阶导数替换原来的整数阶导数 [5] - [11] ,从而得到不同的分数阶模型。分数阶导数有很多种定义,现在使用比较多的定义有Riemann-Liouville [4] [12] 分数阶导数、Grumwald-Letnikov [4] [13] [14] [15] 分数阶导数和Caputo分数阶导数 [12] 等。本文研究内容主要是在Caputo分数阶导数定义的基础上研究的。

虽然分数阶微分方程应用很广,但是如何求解分数阶微分方程的解成为了众多数学家所面临的难题 [16] [17] 。为此,很多研究人员已把很多整数解微分方程的方法应用于分数阶微分方程,如齐次平衡法 [18] [19] [20] 、不变子空间法 [21] [22] 、辅助方程法 [23] 以及Lie对称(群)分析法 [16] [17] 等等。本文中选取了Lie对称分析法对非线性时间分数扩散微分方程进行求解。

Lie对称理论第一次应用到分数阶非线性微分方程中是在二十世纪末, Buckwar [24] 和Luchko [24] 在分数阶导数的意义下,利用Lie群的尺度不变性解决了一类扩散方程。随后Gazizov [25] [26] 和Kasatkin [25] [26] 等人做出了很多贡献。但是,据我们所知,研究分数阶微分方程Lie对称的人们主要考虑包含时间分数阶导数和空间变量的整数阶导数的微分方程。为此,本文中将考虑同时包含时间分数阶导数和时间整数阶导数的微分方程的Lie对称。

具体内容安排如下,第一节中给出了Caputo的分数阶导数定义与性质,特别是给出了两个函数的Leibniz型规则。在第二节中,建立了Caputo分数阶偏微分方程在一个自变量下所对应的Lie对称框架,并分析了相应的对称结构。在第三节中,对同时包含时间整数阶导数和时间Caputo分数阶导数的一类微分方程的Lie对称进行分类。最后根据得出的Lie代数,对所分析的方程进行约化。

2. Caputo分数阶导数

定义2.1 对于 t ( 0 , + ) ,函数 f ( t ) 关于 α R + 的分数阶积分定义为 [27]

J 0 , t α f ( t ) = 1 Γ ( α ) 0 t ( t s ) α 1 f ( s ) d s , α > 0 , (1)

其中伽玛函数在 z > 0 时被定义为 Γ ( z ) = 0 e t t z 1 d t 。当 z < 0 Γ ( z ) 被定义为 z Γ ( z ) = Γ ( z + 1 )

定义2.2 对于 t ( 0 , + ) ,关于函数 f ( t ) α 阶Caputo分数阶导数定义为 [27]

D C 0 , t α f ( t ) = { 1 Γ ( n α ) 0 t ( t s ) n α 1 f ( n ) ( s ) d s , n 1 < α < n , d n d t n f ( t ) , α = n .

其中 n N

定义2.3对于 t ( 0 , + ) ,关于函数 f ( t ) α 阶Riemann-Liouville分数阶导数定义为 [27]

D 0 , t α f ( t ) = { 1 Γ ( n α ) d n d t n 0 t ( t s ) n α 1 d s , n 1 < α < n , d n d t n f ( t ) , α = n .

定义2.4 Caputo分数阶导数与Riemann-Liouville分数阶导数的关系为 [27]

D 0 , t α f ( t ) = D C 0 , t α f ( t ) + i = 0 n 1 f ( i ) ( 0 ) Γ ( i α + 1 ) t i α . (2)

引理2.1设 f ( t ) g ( t ) [ a , b ] 上的解析函数,则有

D 0 , t α ( f ( t ) g ( t ) ) = n = 0 ( α n ) D 0 , t α n f ( t ) g n ( t ) , (3)

D C 0 , t α ( f ( t ) g ( t ) ) = n = 1 ( α n ) D 0 , t α n f ( t ) g n ( t ) + g ( t ) D C 0 , t α f ( t ) i = 0 n 1 ( f g ) ( i ) ( 0 ) Γ ( i α + 1 ) t i α . (4)

其中 ( α n ) = ( 1 ) n- 1 α Γ ( n α ) Γ ( 1 α ) Γ ( n + 1 ) ,公式(3)~(4)称为广义莱布尼茨规则 [28] 。

幂函数的Caputo分数阶导数有如下性质 [22] :

1. 如果 γ > n 1 并且 n 1 < α < n ,则 D C 0 , t α ( t λ ) = Γ ( γ + 1 ) Γ ( γ + 1 α ) t γ α

2. 如果 γ > 1 并且 α > 0 ,则 J C 0 , t α ( t λ ) = Γ ( γ + 1 ) Γ ( γ + 1 α ) t γ + α

3. 如果 n 1 < α < n Z + 并且 k Z + ,则

1) D C 0 , t α ( d k d t k f ( t ) ) = D C 0 , t α + k f ( t )

2) d d t ( D C 0 , t α f ( t ) ) = t n α 1 Γ ( n α ) d n d s n f ( 0 ) + D C 0 , t ( n α ) ( d n + 1 d t n + 1 f ( t ) )

3. 分数阶微分方程的Lie对称

本文中考虑同时包含时间Caputo分数阶导数和时间整数阶导数的如下常微分方程的Lie对称

C 0 , t α u = f ( t , u , u t , u t t , u t t t , , u t t t l ) , 0 < α < 1 , (5)

其中 u = u ( t ) 是因变量,t是自变量。

定理2.1 Caputo分数阶微分方程(5)拥有的单参数Lie对称

t * = t + ε τ + ο ( ε ) ,

u * = u + ε η + ο ( ε ) , (6)

当且仅当它满足以下两个条件

τ | t = 0 = 0 ,

Pr ( α , l ) X ( Δ ) | { Δ = 0 } = 0 , (7)

其中 Δ = C 0 , t α u f ( t , u , u t , u t t , u t t t , , u t t t l ) ε 是群参数,其无穷小算子为

χ = τ ( t , u ) t + η ( t , u ) u , (8)

τ ( t , u ) = t * ε | ε = 0 , η ( t , u ) = u * ε | ε = 0 ,

Pr ( α , l ) X 表示算子(8)中的延拓,具体表达式为

Pr [ α , l ] χ = χ + η t α ( t α u ) + i = 1 l η t i u i , (9)

η t i = D t i ( η τ u t ) + τ D t i ( u t ) , i = 1 , 2 , , l , (10)

D t 表示关于t的全导数

D t = t + u t u + u t t u t + , (11)

η t α 的计算公式如下

η t α = D C 0 , t α ( η τ u t ) + τ D C 0 , t α ( u t ) = D C 0 , t α η D t α ( τ u t ) + τ D C 0 , t α ( u t ) . (12)

引理2.2 无穷小 η α 阶延拓 η t α ( 0 < α < 1 )具体表达式为 [29]

η t α = [ η u α ( τ t + u t τ u ) ] C t α u + C t α ( η ) u t α ( η u ) + μ + k = 1 [ ( α k ) d k d t k ( η u ) ( α 1 k + 1 ) D t k + 1 τ ] J t k α u , (13)

其中

μ = n = 2 m = 2 n k = 2 m r = 0 k ( α n ) ( n m ) ( k r ) ( 1 ) r k ! u r t α u k r t n α Γ ( n + 1 α ) n m + k η n m t k u . (14)

证明:根据公式(12)以及公式(4)得到

η t α = D C 0 , t α η D C 0 , t α ( τ u t ) + τ D C 0 , t α ( u t ) = D 0 , t α η i = 0 n 1 η ( i ) ( 0 ) Γ ( i α + 1 ) t i α α D t ( τ ) D t α ( u ) + i = 0 n 1 ( τ u t ) ( i ) ( 0 ) Γ ( i α + 1 ) t i α i = 0 n 1 ( α n + 1 ) J t n α ( u ) D t n + 1 ( τ ) , (15)

现在根据复合函数的广义链式法则 [27] 得到下式

d α f ( g ( t ) ) d t α = n = 0 k = 0 n ( 1 ) k n ! ( n k ) g k ( t ) t α ( g n k ( t ) ) d n f ( z ) d z n | z = g ( t ) = n = 0 k = 0 n ( 1 ) k n ! ( n k ) g k ( t ) t α ( g n k ( t ) ) m = 0 k n m + k f ( g ( t ) ) n m t k u = n = 0 m = 0 n k = 0 m r = 0 k ( α n ) ( n m ) ( k r ) ( 1 ) r k ! g r ( t ) t α ( g k r ( t ) ) t n α Γ ( n + 1 α ) n m + k f ( g ( t ) ) n m t k g ( t ) , (16)

因此 D 0 , t α η 表示为

D 0 , t α η = n = 0 m = 0 n k = 0 m r = 0 k ( α n ) ( n m ) ( k r ) ( 1 ) r k ! u r t α u k r t n α Γ ( n + 1 α ) n m + k η n m t k u , (17)

接下来,我们从 D 0 , t α η 分离出u及其导数的线性项,这些项在 k = 0 k = 1 中唯一出现,因此有以下两种情况:

k = 0 , m = 0 : n = 1 ( α n ) t n α Γ ( n + 1 α ) n η t n = C 0 , t α η

k = 1 , r = 1 : n = 1 ( α n ) t n α Γ ( n + 1 α ) m = 1 k ( n m ) m t m ( u ) n m t n m ( η u ) = n = 1 ( α n ) t n α Γ ( n + 1 α ) [ n t n ( u η u ) u n t n ( η u ) ] = C 0 , t α ( u η u ) u C 0 , t α ( η u ) = n = 1 ( α n ) 0 , t α n u n t n ( η u ) + η u C 0 , t α u i = 0 n 1 ( u η u ) ( i ) ( 0 ) Γ ( i α + 1 ) t i α u C 0 , t α ( η u ) ,

得到

D 0 , t α η = C 0 , t α η + n = 1 ( α n ) J 0 , t n α u n t n ( η u ) + η u C 0 , t α u i = 0 n 1 ( u η u ) ( i ) ( 0 ) Γ ( i α + 1 ) t i α u C 0 , t α ( η u ) + μ , (18)

由于

i = 0 n 1 η ( i ) ( 0 ) Γ ( i α + 1 ) t i α = i = 0 n 1 t i α Γ ( i α + 1 ) n = 0 m = 0 n k = 0 m r = 0 k ( α n ) ( n m ) ( k r ) × t n α Γ ( n + 1 α ) ( ( 1 ) r k ! u r t m u k r n m + k η t n m u k ) ( 0 ) .

以及 τ | t = 0 = 0 ,得到 η t α 的显式表达式(13),证明完毕。

引理2.3 μ = 0 当且仅当 η 关于u是线性的,即 η u u = 0 ,详细证明见 [23] 。

4. 主要研究结果

定理2.2分数阶微分方程

C 0 , t α u = [ F ( u ) u t ] t + P [ u ] u t 3 , (19)

所拥有的Lie对称如下(见表1):

Table 1. Lie symmetry classification of equation (19)

表1. 方程(19)的Lie对称分类

证明:根据方程在Lie群中的不变性,对非线性时间分数扩散方程(19)进行Lie对称分析,其中

0 < α < 1 ,函数 F ( u ) P ( u ) 为u的函数。根据定理2.2将 Pr [ α , l ] χ = χ + η α ( t α u ) + i = 1 l η i u i 作用于方程

(19)两侧得到

Pr [ α ( t ) , 2 ] χ [ C 0 , t α [ F ( u ) u t ] t P ( u ) ( u t ) 3 ] = η t α η ( 2 ) F ( u ) η ( 1 ) ( 2 F ( u ) u t + 3 P ( u ) ( u t ) 2 ) η [ F ( u ) ( u t ) 2 + F ( u ) u t t + P ( u ) ( u t ) 3 ] = 0 , (20)

其中

η t ( 1 ) = η t + ( η u τ t ) u t τ u u t 2 , η t ( 2 ) = η t t + ( 2 η t u τ t t ) u t + ( η u u 2 τ t u ) u t 2 + ( η u 2 τ t ) u t t 3 τ u u t u t t τ u u u t 3 .

从(20)得到无穷小的确定方程组:

{ η u u = τ u = 0 , 2 η t u + τ t t ( 1 α ) = 0 , C 0 , t α η F ( u ) η t t u C 0 , t α η u = 0 F ( u ) ( 2 η t u τ t t ) + 2 F ( u ) η t = 0 , α τ t F ( u ) η F ( u ) + 2 τ t F ( u ) = 0 , 2 η u P ( u ) ( 3 α ) P ( u ) τ t + η P ( u ) = 0 , α τ t F ( u ) η F ( u ) η u F ( u ) + 2 τ t F ( u ) 3 η t P ( u ) = 0. (21)

当P和F任意函数时, η = 0 以及 τ = 0 。其中情况如下:

情况1. 当P等于常数时:

在不失一般性,不妨设 P = 1 ,方程组(21)化简为

{ η u u = 0 , 2 η t u + τ t t ( 1 α ) = 0 , 2 η u ( 3 α ) τ t = 0 , ( 2 α ) τ t F ( u ) η F ( u ) = 0 , C 0 , t α η F ( u ) η t t u C 0 , t α η u = 0 F ( u ) ( 2 η t u τ t t ) + 2 F ( u ) η t = 0 , α τ t F ( u ) η F ( u ) η u F ( u ) + 2 τ t F ( u ) 3 η t = 0. (22)

从方程(22)中的第4个式子,能得到 η = ( 2 α ) τ t F ( u ) / F ( u ) ,将其代入(22)中再根据式2,得到 τ = c 1 t + c 2 。再根据(22)中的3式,在 c 1 0 时有 F = c 4 ( ( α 3 ) u 2 ( α 2 ) c 3 ) 1 + 2 α 3 ,于是 η = c 1 2 ( ( α 3 ) u 2 ( α 2 ) c 3 ) 。对应的Lie算子为 χ 1 = t t + ( ( α 3 ) 2 u ) u

情况2. 当 P = u n

P = u n 时,方程组(21)化简为

{ η u u = 0 , 2 η t u + τ t t ( 1 α ) = 0 , C 0 , t α η F ( u ) η t t u C 0 , t α η u = 0 , F ( u ) ( 2 η t u τ t t ) + 2 F ( u ) η t = 0 , α τ t F ( u ) η F ( u ) + 2 τ t F ( u ) = 0 , 2 η u u n ( 3 α ) u n τ t + η n u n 1 = 0 , α τ t F ( u ) η F ( u ) η u F ( u ) + 2 τ t F ( u ) 3 η t u n = 0. (23)

从方程(23)中的第5个式子,能得到 η = ( 2 α ) τ t F ( u ) / F ( u ) 。将其代入(23)中再根据式2,得到 τ = c 1 t + c 2 。再根据(22)中的3式,在 c 1 0 时得到 F = c 4 ( ( α 3 ) u 1 + n 2 ) 1 + 2 α 3 ,于是得到 η = c 1 ( α 3 ) u 2 + n 。则由 F = c 4 ( ( α 3 ) u 1 + n 2 ) 1 + 2 α 3 以及 P = u n 确定的方程拥有的Lie对称算子F为: χ 2 = t t + ( ( 3 α ) u 2 + n ) u

情况3. F等于常数

在不失一般性的情况下,令 F = 1 ,方程组(21)化简为

{ η u u = 0 , 2 η t u + τ t t ( 1 α ) = 0 , C 0 , t α η η t t u C 0 , t α η u = 0 2 η t u τ t t = 0 , α τ t + 2 τ t = 0 , 2 η u P ( u ) ( 3 α ) P ( u ) τ t + η P ( u ) = 0 , 3 η t P ( u ) = 0. (24)

从方程组(24)中的第1个和第5个式子,得到 η = b 1 ( t ) + u b 2 ( t ) τ = c 1 。将其代入方程组(24)中根据式1与式7,得到 b 1 ( t ) = b 1 以及 b 2 ( t ) = b 2 。根据6式,得到 P = a 1 / ( b 1 + u b 2 ) 2 。再根据 τ | t = 0 = 0 ,当 P 0 时,Lie对称算子数为 χ 3 = u u 。当 P = 0 P = a 1 时, η = b 2 ,即对应的算子为 χ 4 = u

情况4. F 0

i) 当 F = u n 时,方程组(21)化简为

{ 2 η t u + τ t t ( 1 α ) = 0 , C 0 , t α η u n η t t u C 0 , t α η u = 0 , u n ( 2 η t u τ t t ) + 2 n u n 1 η t = 0 , α τ t u n η n u n 1 + 2 τ t u n = 0 , 2 η u P ( u ) ( 3 α ) P ( u ) τ t + η P ( u ) = 0 , α τ t n u n 1 η n ( n 1 ) u n 2 η u n u n 1 + 2 τ t n u n 1 3 η t P ( u ) = 0. (25)

首先根据方程组(25)中的式4,得到 η = u ( 2 α ) τ t / n 。将 η 代入(25)中再根据式1得到 τ = c 1 + t c 2 。最后再根据第5式,得到 P = b 1 u 2 ( 2 α ) + n ( α 3 ) α 2 。故通过上面的分析得到由 F = u n P = b 1 u 2 ( 2 α ) + n ( α 3 ) α 2 对应的Lie对称算子为 χ 5 = t t + ( u ( 2 α ) / n ) u

ii) 当 F = e u 时,方程组(21)化简为

{ 2 η t u + τ t t ( 1 α ) = 0 , C 0 , t α η F ( u ) η t t u C 0 , t α η u = 0 , 2 η t u τ t t + 2 η t = 0 , α τ t η + 2 τ t = 0 , 2 η u P ( u ) ( 3 α ) P ( u ) τ t + η P ( u ) = 0 , α τ t e u + η e u + η u e u 2 τ t e u + 3 η t P ( u ) = 0. (26)

从方程组(26)中的式4,得到 η = ( 2 α ) τ t 。再根据(26)中的式1,得到 τ = c 1 + t c 2 。再根据5式算得 P = b 1 e u ( α 3 ) α 2 。由此得到当 P = b 1 e u ( α 3 ) α 2 F = e u 时,算子为 χ 6 = t t + ( 2 α ) u

iii) 当 F = u 4 2 α 时,通过分析得到 P = b 1 u 4 2 α ,对应的算子为 χ 7 = t t + 1 2 u u

综上所述,我们从方程(19)的Lie对称开始,通过分析化简Lie对称的确定方程组(21),得到P完整的分类结果如表1所示,证明完毕。

定理2.3当 P = b 1 u 4 2 α F = u 4 2 α 时,方程(19)约化为

C 0 , s α s = 1 / 8 e α r ( s ) 1 2 α s ( s ( 16 8 α + 3 b 1 s ) z [ s ] + ( 6 4 α + 3 b 1 s ) z [ s ] 2 + b 1 z [ s ] 3 + s ( ( 16 8 α + 3 b 1 s ) 4 z [ s ] ) ) . (27)

证明:取 P = b 1 u 4 2 α F = u 4 2 α 时,所确定的无穷小算子 χ 7 = t t + 1 2 u u 。使用正则变量的对称方法,偏微分方程 χ ( r ) = t r t + 1 2 u r u = 1 χ ( s ) = t s t + 1 2 u s u = 0 所产生的相关特征方程为: d t t = 2 d u u = d s 0 ,得

到的相似变换为

r = ln | t | , s = u 2 / t , (28)

d s d r = 2 u u u 2 t , (29)

得到

u = 1 2 u d s d r + u 2 t ,

以及

u = 1 2 u d 2 s d r 2 u 2 u 2 d s d r + u 2 t = 1 2 u d 2 s d r 2 1 4 u 3 ( d s d r ) 2 + u 4 t 2 ,

z = d s d r ,将 u = e r / 2 s t = e r 以及 u u 代入方程(19)中再进行化简得到方程(27),证明完毕。

5. 结论

本文对包含Caputo时间分数阶导数与整数阶导数的一类微分方程进行了Lie对称分析,给出了公式(5)所确定的无穷小算子的一般结构,然后进一步得到求解此类方程的对称结构。最后通过Caputo分数阶的相关性质Caputo分数阶微分方程的Lie理论,给出了所考虑的微分方程拥有的对称定理,对部分情况给出了原方程的Lie对称约化。

致谢

在此次写论文中,我发现写论文是要真真正正用心去做的一件事情,是真正的自己学习的过程和研究的过程,没有学习就不可能有研究的潜力,没有自己的研究,就不会有所突破,那也就不叫论文了。期望这次的经历能让我在以后学习中激励我继续进步。

本篇文章在银山老师的帮助下完成,非常感谢老师在我写论文期间的帮助。

基金项目

国家自然科学基金地区基金(No. 12161064);

内蒙古自治区自然基金项目(2020LH01003)。

NOTES

*通讯作者。

参考文献

[1] 吴强, 黄建华. 分数阶微积分[M]. 北京: 清华大学出版社, 2016: 1-10.
[2] Kiryakova, V.S. (1993) Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics. Chapman & Hall, London.
[3] Sun, H., Zhang, Y., Baleanu, D., Chen, W., Chen, Y., et al. (2018) A New Collection of Real World Applications of Fractional Calculus in Science and Engineering. Communications in Nonlinear Science and Numerical Simulation, 64, 213-231.
https://doi.org/10.1016/j.cnsns.2018.04.019
[4] Podlubny, I. (1999) Fractional Differential Equations. Academic Press, London.
[5] Hilfer, R. (2000) Applications of Fractional Calculus in Physics. World Scientific, Singapore.
https://doi.org/10.1142/3779
[6] Scalas, E., Gorenflo, R. and Mainardi, F. (2000) Fractional Calculus and Con-tinuous-Time Finance. Statistical Mechanics and Its Applications, 284, 376-384.
https://doi.org/10.1016/S0378-4371(00)00255-7
[7] Junmarie, G. (2007) Fractional Partial Differential Equations and Modified Riemann-Liouville Derivative New Methods for Solution. Journal of Applied Mathematics and Computing, 24, 31-48.
https://doi.org/10.1007/BF02832299
[8] Huang, F. and Liu, F. (2005) The Time Fractional Diffusion Equation and the Advection Dispersion Equation. ANZIAM Journal, 46, 317-330.
https://doi.org/10.1017/S1446181100008282
[9] Su, N., Sander, G. and Liu, F. (2005) Similarity Solution of Fokker-Planck Equation with Time and Scale-Dependent Dispersivity for Solute Transport in Fractal Porous Media. Ap-plied Mathematical Modelling, 2, 852-870.
https://doi.org/10.1016/j.apm.2004.11.006
[10] Huan, F. and Liu, F. (2005) The Space-Time Fractional Diffusion Equation with Caputo Derivatives. Journal of Applied Mathematics and Computing, 19, 233-245.
[11] Huang, F. and Liu, F. (2005) The Fundamental Solution of the Space-Time Fractional Advection-Dispersion Equation. Journal of Ap-plied Mathematics and Computing, 18, 339-350.
https://doi.org/10.1007/BF02936577
[12] Hashemi, M.S. (2018) Invariant Subspace Admitted by Fractional Differential Equations with Conformable Derivatives. Chaos Solitons and Fractals, 10, 161-169.
https://doi.org/10.1016/j.chaos.2018.01.002
[13] Origenian, M.D. and Machado, J. (2006) Fractional Calculus Applications in Signals and Systems. Signal Processing, 83, 2503-2504.
https://doi.org/10.1016/j.sigpro.2006.02.001
[14] Li, X.-R. (2003) Fractional Calculus Fractal Geometry and Sto-chastic Process. The University of Western Ontario, London.
[15] Origenian, M.D. (2000) Introduction to Fractional Linear Systems Part 1: Continuous-Time Case. IEE Proceedings—Vision, Image and Signal Processing, 147, 63-65.
https://doi.org/10.1049/ip-vis:20000272
[16] Wang, G.W. and Xu, T.Z. (2013) Symmetry Properties and Explicit Solutions of the Nonlinear Time Fractional KdV Equation. Boundary Value Problems, 2013, Article No. 232.
https://doi.org/10.1186/1687-2770-2013-232
[17] Jafari, H., Kadkhoda, N. and Balanus, D. (2015) Fractional Lie Group Method of the Time Fractional Bossiness Equation. Nonlinear Dynamics, 81, 1569-1574.
https://doi.org/10.1007/s11071-015-2091-4
[18] Wang, M.L. (1995) Solitary Wave Solutions for Variant Bossi-ness Equations. Physics Letters A, 199, 169-172.
https://doi.org/10.1016/0375-9601(95)00092-H
[19] Wang, M.L. (1996) Exact Solutions for a Compound KdV-Burgers Equation. Physics Letters A, 213, 279-287.
https://doi.org/10.1016/0375-9601(96)00103-X
[20] Wang, M.L., Zhou, Y.B. and Li, Z.B. (1996) Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics. Physics Letters A, 16, 67-75.
https://doi.org/10.1016/0375-9601(96)00283-6
[21] Xu, X.P. (2007) Stable-Range Approach to the Equation of Nonstationary Transonic Gas Flows. Quarterly Journal of Mechanics and Applied Mathematics, 65, 529-547.
https://doi.org/10.1090/S0033-569X-07-01057-9
[22] Xu, X.P. (2009) Stable-Range Approach to Short Wave and Khokhlov-Zabolotskaya Equations. Acta Mathematicae Applicatae, 106, 433-454.
https://doi.org/10.1007/s10440-008-9306-3
[23] Sirendaoreji and Sun, J. (2003) Auxiliary Equation Method for Solving Nonlinear Partial Differential Equations. Physics Letters A, 309, 387-396.
https://doi.org/10.1016/S0375-9601(03)00196-8
[24] Buckwar, E. and Luchko, Y. (1998) Invariance of a Partial Differential Equation of Fractional Order under the Lie Group of Scaling Transformations. Journal of Mathematical Analysis and Applications, 227, 81-97.
https://doi.org/10.1006/jmaa.1998.6078
[25] Gazizov, R.K., Kasatkin, A.A. and Lukashchuk, S.Y. (2007) Contin-uous Transformation Groups of Fractional Differential Equations. Vestnik Usatu, 9, 125-135.
[26] Gazizov, R.K., Ka-satkin, A.A. and Lukashchuk, S.Y. (2009) Symmetry Properties of Fractional Diffusion Equations. Physica Scripta, 2009, Article ID: 014016.
https://doi.org/10.1088/0031-8949/2009/T136/014016
[27] Zhang, Z.Y. (2020) Sym-metry Determination and Nonlinearization of a Nonlinear Time-Fractional Partial Differential Equation. Proceedings. Mathematical Physical and Engineering Sciences, 476, 4416-4798.
https://doi.org/10.1098/rspa.2019.0564
[28] Samko, S.G., Kilbas, A.A. and Maricev, O.I. (1993) Fractional Inte-grals and Derivatives: Theory and Applications. Minsk Nauka I Technik.
[29] Gulistan, I.K. and Dogan (1996) Sym-metry Analysis of Initial and Boundary Value Problems for Fractional Differential Equations in Caputo Sense. Chaos Solitons Fractals, 134, Article ID: 109684.
https://doi.org/10.1016/j.chaos.2020.109684