达格列净在2型糖尿病患者中的应用与影响
Application and Influence of Dapagliflozin in Patients with Type 2 Diabetes Mellitus
DOI: 10.12677/MD.2023.133041, PDF, HTML, XML, 下载: 231  浏览: 447 
作者: 王永萍*:济宁医学院临床医学院,山东 济宁;刘亚平#:济宁市第一人民医院内分泌科,山东 济宁;山东大学药学院,山东 济南;辰欣药业股份有限公司,山东 济宁;卢秀莲:辰欣药业股份有限公司,山东 济宁
关键词: 达格列净钠–葡萄糖共转运蛋白2抑制剂2型糖尿病Dapagliflozin Sodium-Glucose Cotransporter 2 Inhibitor Type 2 Diabetes Mellitus
摘要: 糖尿病发病率逐渐升高,其中2型糖尿病约占90%,2型糖尿病是一种发病机制复杂的慢性疾病,主要以胰岛素分泌不足或胰岛素抵抗为特征,其并发症严重影响人们的生活质量、威胁人们的生命健康。达格列净作为一种钠–葡萄糖共转运蛋白2抑制剂,不依赖于胰岛素发挥作用,除了控制血糖外,还可降低体重、血压、改善血脂,更重要的是近几年人们还发现其在心肾保护等方面也发挥重要作用。本文主要阐述达格列净在2型糖尿病患者中的主要应用及影响,旨在为临床用药提供参考。
Abstract: The morbidity of diabetes is gradually increasing, among which type 2 diabetes accounts for about 90%. Type 2 diabetes is a chronic disease with complex pathogenesis, mainly characterized by in-sulin deficiency or insulin resistance, and its complications seriously affect people’s quality of life and threaten people’s life and health. Dapagliflozin, as a sodium-glucose cotransporter 2 inhibitor, does not depend on insulin. In addition to control the blood glucose level, dapagliflozin can also re-duce body weight, blood pressure and improve blood lipids. More importantly, in recent years, peo-ple have found that it also plays an important role in the protection of heart and kidney. This article mainly describes the main application and influence of dapagliflozin in patients with type 2 diabe-tes mellitus, in order to provide reference for clinical medication.
文章引用:王永萍, 刘亚平, 卢秀莲. 达格列净在2型糖尿病患者中的应用与影响[J]. 医学诊断, 2023, 13(3): 262-270. https://doi.org/10.12677/MD.2023.133041

1. 引言

近年来,糖尿病的发病率呈逐渐升高的趋势。据估计,糖尿病在全球的患病率为4.63亿人,预计到2045年将增加至7亿人 [1] ,其中以2型糖尿病(type 2 diabetes mellitus, T2DM)最为常见。T2DM是以胰岛素分泌不足或胰岛素抵抗为特征,若血糖控制不佳可引起代谢紊乱、脏器损害 [2] ,并发糖尿病肾病、视网膜病变、神经病变、心血管疾病等,严重影响人们的生活质量、威胁人类生命健康。在全球范围内,T2DM成为卫生保健系统的巨大负担 [3] 。目前主要采取饮食指导、合理运动、健康教育管理、使用胰岛素及口服降糖药物等改善T2DM患者血糖水平 [4] 。降糖药物的选择需要倾向于减重、低血糖风险小,并且降糖药物上市需要进行心血管安全性评估。而达格列净(dapagliflozin, DAPA)作为一种钠–葡萄糖共转运蛋白2型抑制剂(sodium-glucose cotransporter 2 inhibitor, SGLT2i),2017年在我国成功上市,其主要促进尿糖排泄及利钠,获得诸多代谢益处,如降低糖化血红蛋白(glycated hemoglobin, HbA1c)、体重和血压 [5] ,近几年被证实发挥心肾保护等作用 [6] [7] 。本文将对达格列净在T2DM患者中的主要作用展开综述。

2. 作用机制

钠–葡萄糖共转运蛋白(sodium-glucose cotransporter, SGLT)主要包括SGLT-1、SGLT-2两种亚型,可通过钠/钾-ATP酶介导钠和葡萄糖在细胞膜上的协同转运,SGLT-1主要分布在肾小管直段和小肠等区域,负责肾脏内约10%葡萄糖和胃肠内葡萄糖重吸收。在肾脏中,每天约有180克葡萄糖通过肾小球滤过随原始尿液排出,SGLT2主要负责肾近端小管1段和2段的葡萄糖重吸收,它可重吸收超过90%的过滤葡萄糖负荷,因此,SGLT2抑制剂通过抑制SGLT2抑制葡萄糖的重吸收,使尿糖排泄量增加从而降低血糖 [8] 。并且这种作用不依赖于胰岛素水平,不会因胰岛素抵抗或β细胞功能减弱而受影响,这种独特的降糖作用机制,既可单药治疗,也可与其他口服、注射类药物联用达到协同增效的目的。

3. 对T2DM血糖的影响

T2DM中SGLT2上调,进一步使葡萄糖重吸收,加重高血糖,而达格列净可阻断肾脏葡萄糖的重吸收而降低血糖,因此有效改善T2DM患者的空腹血糖、餐后血糖和HbA1c,可作为T2DM单一疗法或其他疗法的辅助治疗 [9] 。临床试验发现,单用达格列净治疗T2DM时,治疗组HbA1c可降低0.11%~0.44%,与剂量呈相关性 [10] 。Yang W [11] 等在一项为期24周III期双盲、随机对照试验中发现胰岛素控制不佳的亚洲T2DM患者,联合达格列净显著改善血糖,并降低体重和血压。严玲玲 [12] 等将300例T2DM患者随机分为两组,试验组在对照组单用二甲双胍的基础上加用达格列净,治疗6周后试验组的空腹血糖、餐后2 h血糖、HbA1c水平均显著低于对照组,不良反应发生率低。提示达格列净具有显著降糖效果,常规降糖药物的药效依赖其自身胰岛素水平,当存在胰岛素抵抗或胰岛β细胞功能衰竭时,降糖效果很难达到预期目标,而达格列净不依赖于胰岛素水平发挥降糖作用,弥补了其他降糖药物的缺陷,更好地控制血糖。

4. 对T2DM体重、血脂、血压的影响

肥胖、高血压和血脂异常是T2DM患者常伴随的危险因素,目前治疗重点是针对多个危险因素的综合治疗,而不是单纯降糖。减重可降低T2DM合并肥胖患者的死亡率,同时改善高血压、高血脂等心血管疾病的危险因素。研究指出,T2DM患者口服达格列净后,每日有50~80 g葡萄糖经尿液排出体外,相当于减少机体200~300 kcal热量 [13] ,还可将葡萄糖转化为脂肪酸和酮体,降糖的同时提高脂肪利用率。此外,达格列净通过渗透性利尿来诱导减重。一项mata分析中比较不同的SGLT-2i用量与T2DM患者体重的关系,4816名T2DM患者纳入21项随机对照试验,接受达格列净治疗组的患者,结果显示体重减轻与达格列净的剂量显著有关 [14] ,用2.5 mg、5 mg、10 mg和20 mg达格列净治疗导致体重显著下降,加权均数差分别为−1.30 kg、−1.51 kg、−1.79 kg、−2.24 kg,P < 0.001。另一项荟萃分析表明达格列净减轻T2DM患者的体重,与甘油三酯(triglyceride, TG)水平、总胆固醇(total cholesterol, TC)水平降低和高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)升高有关 [15] 。

减重降脂降糖的同时,降压对T2DM患者也具有重要意义。因为T2DM患者常合并高血压,患病率高达75% [16] ,糖尿病和高血压相互影响,形成恶性循环。糖尿病诱发高血压的基本机制包括 [17] :1) 胰岛素抵抗和高糖血症会引起肾素–血管紧张素–醛固酮系统(rennin-angiotensin-aldosterone system, RASS)和交感神经系统(sympathetic nervous system, SNS)的不适当激活,从而导致血管阻力和动脉压力增加。2) 胰岛素的代谢作用依赖于正常的线粒体功能,而在糖尿病患者中,过量的活性氧(reactive oxygen species, ROS)产生可损伤DNA、蛋白质和脂质,从而导致线粒体功能障碍,过量的ROS会减少NO生成,而NO具有舒张血管的作用。3) 全身和心血管炎症是胰岛素抵抗、糖尿病和高血压发展的重要因素。因为促炎细胞因子可损害胰岛素代谢信号,减少胰岛素介导的NO生成,最终导致动脉僵硬和高血压。此外,高血压的存在似乎进一步提高SNS对胰岛素的反应。交感神经张力的增加刺激β-肾上腺素能受体,通过激活丝氨酸/苏氨酸激酶,减弱胰岛素代谢信号,从而促进胰岛素抵抗 [18] 。有研究指出,与无高血压患者相比,糖尿病合并高血压患者具有更高的心血管和肾脏风险,所以控制好血压对糖尿病患者尤为重要。临床试验中Hao Z [19] 等人在T2DM合并高血压患者中使用达格列净治疗3个月后,显示达格列净与24小时平均收缩压和白天收缩压减低有关,且达格列净治疗组降压药较对照组使用减少,发现降压作用与达格列净增加24小时尿酸排泄有关。另外达格列净的渗透性利尿、利钠以及血压降低可能会激活糖尿病患者全身肾素–血管紧张素–醛固酮系统(RASS) [20] ,相反,在盐诱导高血压非糖尿病大鼠模型中,发现达格列净减缓了盐诱导高血压的发展,而没有改变RAAS的活性 [21] 。据报道,原发性醛固酮增多症(primary aldosteronism, PA)是继发性高血压的最常见形式,其患病率在糖尿病和高血压患者中为11%~14%,而醛固酮/肾素浓度比值(aldosterone to renin ratio, ARR)通常用于筛查PA。因此,阐明达格列净是否能影响糖尿病和高血压患者PA筛查的ARR值是一个重要的临床问题。张楠 [22] 等人在达格列净治疗T2DM合并高血压患者12周后,发现患者的血浆肾素浓度、醛固酮水平及醛固酮/肾素浓度比值(ARR)均较前升高,但差异无统计学意义。该实验缺少早期及更长时间的数据、样本量较小,结论尚需更大样本量及更优设计的研究进一步验证。

5. 对T2DM炎症相关指标的影响

研究表明肿瘤坏死因子-α (tumor necrosis factor-alpha, TNF-α)、白介素-6 (interleukin-6, IL-6)等促炎因子参与炎症、胰岛素抵抗、β细胞功能障碍的进展,从而导致T2DM的发生 [23] [24] 。氧化应激和炎症是T2DM及其血管并发症的主要因素,抑制炎症反应被认为是一种代谢保护,可减少胰岛素抵抗和T2DM的发展 [25] 。Wang C [26] 等对60例T2DM患者使用常规口服降糖药物的基础上加用达格列净,治疗4周后试验组TNF-α、IL-6、白介素-1 (interleukin-1, IL-1)、超敏C反应蛋白(high-sensitivity C-reactive protein, hs-CRP)的水平显著低于对照组。研究还发现维生素D可降低与胰岛素抵抗相关的氧化应激和炎症反应,认为维生素D缺乏是加速胰岛素抵抗形成的因素之一 [27] 。骆莹莹 [28] 等得出与赵梦萍 [29] 等相符的结果,即达格列净降低T2DM患者TNF-α、IL-6炎症水平,还发现治疗组25-羟基维生素D3水平明显高于对照组,但该实验未说明是否在研究期间严格限制患者使用外源性维生素D,可能对实验结果造成影响。目前达格列净对炎症指标的影响大多局限在动物实验中,糖尿病患者的临床研究相对较少。

6. 对T2DM肾脏的影响

对于T2DM患者,尽管在治疗上已根据个体需要强化血糖控制、使用RASS抑制剂以及控制血压和血脂,但其发生肾脏并发症的残余风险仍较高 [30] 。微血管并发症之一的糖尿病肾病(diabetic nephropathy, DN),是以尿白蛋白排泄升高和(或)肾小球滤过率降低为特征。白蛋白尿和微量白蛋白尿可显著增加慢性肾脏疾病(chronic kidney disease, CKD)进展和心血管并发症的发生率 [31] 。DN是CKD的一种形式,在引起终末期肾病的原发疾病中占很大比例 [32] 。SGLT2i对肾脏的可能保护机制:1) 增加钠向远曲小管致密斑的输送,恢复管球反馈机制,使入球小动脉收缩,从而减少血流量,降低肾小球内压力和高滤过。2) 降低白蛋白尿的进展风险,并与微量白蛋白尿和蛋白尿的大幅减少相关 [33] ,降低尿酸、尿蛋白与肌酐比值。3) 改善肾小管氧合和代谢,以及减少肾脏炎症和纤维化 [34] 。4) 诱导促红细胞生成素产生和红细胞比容增加 [35] 。DAPA-CKD试验是一项多中心、双盲、随机对照试验,纳入4304名参与者按1:1随机分配,试验组予以达格列净,2906名(67.5%)参与者患有T2DM,中位数随访2.4年,得出达格列净可降低糖尿病和非糖尿病慢性肾脏疾病患者主要肾脏和心血管不良事件的风险和全因死亡率 [6] ,与Heerspink HJL [36] 等人的结果相符。另外Heerspink HJL [37] 等人还发现:在2周之前达格列净导致估计肾小球滤过率(estimated glomerular filtration rate, eGFR)急性下降,但随后减缓eGFR的下降速度,且T2DM患者eGFR慢性下降的减缓比在非T2DM患者中更为明显,同时在蛋白尿较高或血糖控制较差的患者中,达格列净对eGFR随时间下降速率的减缓大于安慰剂。可见达格列净对肾脏具有保护作用,且与糖尿病无关。此外,在CLARE-TIMI58试验中,发现达格列净可减轻心血管风险高的T2DM患者的肾功能下降,提示达格列净在DKD的早期预防中发挥作用 [7] 。

7. 对心血管系统的影响

心血管疾病是糖尿病患者致残和死亡的主要原因,主要表现为冠状动脉心脏病、心肌梗死、缺血性中风、外周动脉疾病和心力衰竭。美国糖尿病协会 [38] 指出在已确诊动脉粥样硬化性心血管疾病或心血管高危因素、确诊肾病或心力衰竭的T2DM患者中,SGLT2i已被证明对心血管疾病有益,推荐其作为降糖方案和全面降低心血管风险的一部分。CLARE-TIMI58试验是目前规模最大的SGLT2i对心血管预后的研究,共纳入17160例T2DM患者,随访中位时间4.2年,发现达格列净显著降低心血管死亡和因心力衰竭(heart failure, HF)住院的发生率 [39] 。提示无论是否有动脉粥样硬化心血管疾病及其危险因素,达格列净可预防T2DM患者心血管事件,特别是因HF住院的发生率。该试验还发现达格列净降低T2DM患者房颤发生的风险 [40] ,与Ong HT [41] 等人在一项meta分析中的结论相符。T2DM是发生HF的潜在危险因素,也是HF常见的并发症,二者相互影响。在之前的DAPA-HF的试验中,观察左心室射血分数在40%或以下的心衰患者,无论是否存在2型糖尿病,达格列净降低心衰恶化或心血管死亡的风险 [42] 。DELIVER试验的结果将DAPA-HF试验的结果扩展到HF和左室射血分数大于40%的患者 [43] ,发现达格列净可降低HF和射血分数轻度降低或保持的患者HF恶化或心血管死亡的综合风险 [44] 。并通过这些数据表明SGLT2i的益处可能扩展到射血分数的整个范围 [44] 。通过对DAPA-HF和DELIVER试验的荟萃分析,证实达格列净能显著降低心血管原因和HF住院死亡的风险,无论射血分数如何、伴或不伴T2DM [45] 。该分析对于临床用药有重要意义,在被诊断为HF且无禁忌证的患者,即使等待射血分数的测量,也可以开始使用达格列净治疗。达格列净对心脏保护的机制可能为:1) 促进尿钠排泄和渗透性利尿,减少水钠潴留,减轻心脏前后负荷,改善血流动力学。2) 改善心脏能量代谢,预防不良心脏重构 [46] 。3) 降低体重、血压以及改善血脂代谢。4) 减少动脉硬化。凝血和血小板活化的升高是动脉粥样硬化和动脉粥样硬化血栓形成的驱动因素 [47] ,这些可导致心血管事件,如心肌梗死和心力衰竭。在使用加速动脉粥样硬化和饮食诱导的胰岛素抵抗的小鼠模型中,达格列净可减少凝血酶的形成和血小板的活化 [48] 。5) 对抗心肌纤维化。通过激活STAT3信号通路促进巨噬细胞由M1型向M2型中的M2c活化和减少肌成纤维细胞的浸润抑制胶原纤维合成,从而发挥对抗心肌纤维化的作用 [49] 。此外,有研究者提出SGLT2i可抑制心肌细胞中Na+/H+(NHE1)的交换,降低细胞质Na+和Ca2+的浓度,增加线粒体Ca2+的浓度,从而保护心肌 [50] 。相反,Chung YJ [51] 等人研究表明NHE1活性不受SGLT2i的抑制,对衰竭心脏的有益作用不应通过对心肌NHE1或细胞内[Na+]的作用来解释。目前SGTL-2i对心血管获益的机制尚不清楚,有待进一步深入研究。

8. 安全性及耐受性

尽管达格列净作为一种SGLT2i已被证实有不少的保护作用,但也可能引起低血糖、泌尿道感染、生殖器感染、糖尿病酮症酸中毒、骨折、截肢、急性肾损伤、血容量不足、富尼耶坏疽等副作用 [52] [53] 。单纯口服达格列净较少发生低血糖,但当与胰岛素或胰岛素促分泌剂联合使用时可能会增加低血糖风险。有研究指出达格列净促进尿糖的排泄,这可能为泌尿生殖系统的细菌和真菌定植提供有利的条件,从而增加泌尿道感染和生殖器感染的发生风险,但这类感染比较容易治疗,很少引起药物应用或研究终止。富尼耶坏疽是SGLT2i一种罕见的位于会阴和泌尿生殖系统区域的坏死性筋膜炎,其进展极快且死亡率高 [54] ,所以,若有严重反复感染史的T2DM患者应避免应用达格列净。SGLT2i还可能增加发生血容量不足、骨折风险 [55] ,因此,这类药物在用于老年人群时需要谨慎。SGLT2i发生糖尿病酮症酸中毒(diabetic ketoacidosis, DKA)的风险较低,虽然在CLARE-TIMI 58试验 [39] 中达格列净治疗组8574名患者中27名(0.3%)出现DKA不良反应,但超过80%的DKA患者在基线时使用胰岛素。T2DM患者自身会使急性肾损伤(acute kidney injury, AKI)的风险增加3到5倍 [56] ,美国食品及药物管理局不良事件报告系统提出SGLT2i可能增加AKI的风险。但有研究者表明SGLT2i可降低急性肾损伤的风险 [57] ,所以有关达格列净的不良反应尚需进一步关注。

9. 总结

达格列净作为一种新型口服降糖药物,独立于胰岛素发挥作用,具有降糖降脂降压减重等多效特性,尤其是近几年无论患者是否患糖尿病,其在心肾方面发挥重要作用,应用前景广泛。同时也有一些问题值得进一步研究,例如达格列净在1型糖尿病患者中的疗效、安全性;有研究者提出达格列净对2型糖尿病非经典并发症,如非酒精性脂肪肝、认知障碍痴呆等有一定的益处,但目前研究较少;达格列净在心肾保护方面的研究大多是在白人中进行的,而在中国患者中的研究较少,仍需大量试验进一步研究以评估其安全性及经济性等。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Saeedi, P., Petersohn, I., Salpea, P., et al. (2019) Global and Regional Diabetes Prevalence Estimates for 2019 and Projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th Edition. Diabetes Research and Clin-ical Practice, 157, Article ID: 107843.
https://doi.org/10.1016/j.diabres.2019.107843
[2] Tan, S.Y., Wong, J., Yan, J.S., et al. (2019) Type 1 and 2 Diabetes Mellitus: A Review on Current Treatment Approach and Gene Therapy as Potential Inter-vention. Diabetes and Metabolic Syndrome: Clinical Research and Reviews, 13, 364-372.
https://doi.org/10.1016/j.dsx.2018.10.008
[3] Bommer, C., Heesemann, E., Sagalova, V., et al. (2017) The Global Eco-nomic Burden of Diabetes in Adults Aged 20-79 Years: A Cost-of-Illness Study. The Lancet Diabetes & Endocrinology, 5, 423-430.
https://doi.org/10.1016/S2213-8587(17)30097-9
[4] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548.
[5] Scheen, A.J. (2020) Sodium—Glucose Cotransporter Type 2 In-hibitors for the Treatment of Type 2 Diabetes Mellitus. Nature Reviews Endocrinology, 16, 556-577.
https://doi.org/10.1038/s41574-020-0392-2
[6] Wheeler, D.C., Stefánsson, B.V., Jongs, N., et al. (2021) Effects of Dapagliflozin on Major Adverse Kidney and Cardiovascular Events in Patients with Diabetic and Non-Diabetic Chronic Kidney Disease: A Prespecified Analysis from the DAPA-CKD Trial. The lancet Diabetes & Endocrinology, 9, 22-31.
https://doi.org/10.1016/S2213-8587(20)30369-7
[7] Mosenzon, O., Raz, I., Wiviott, S.D., et al. (2022) Dapagliflozin and Prevention of Kidney Disease among Patients with Type 2 Diabetes: Post Hoc Analyses from the DECLARE-TIMI 58 Trial. Diabetes Care, 45, 2350-2359.
https://doi.org/10.2337/dc22-0382
[8] Saisho, Y. (2020) SGLT2 Inhibitors: The Star in the Treatment of Type 2 Diabetes? Diseases, 8, Article 14.
https://doi.org/10.3390/diseases8020014
[9] Nicholson, M.K., Ghazal Asswad, R. and Wilding, J.P. (2021) Dapagli-flozin for the Treatment of Type 2 Diabetes Mellitus—An Update. Expert Opinion on Pharmacotherapy, 22, 2303-2310.
https://doi.org/10.1080/14656566.2021.1953471
[10] Kaku, K., Inoue, S., Matsuoka, O., et al. (2013) Efficacy and Safety of Dapagliflozin as a Monotherapy for Type 2 Diabetes Mellitus in Japanese Patients with Inadequate Glycaemic Control: A Phase II Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial. Diabetes, Obesity and Metabolism, 15, 432-440.
https://doi.org/10.1111/dom.12047
[11] Yang, W.Y., Ma, J.H., Li, Y.M., et al. (2018) Dapagliflozin as Add-on Therapy in Asian Patients with Type 2 Diabetes Inadequately Controlled on Insulin with or without Oral Antihyperglycemic Drugs: A Randomized Controlled Trial. Journal of Diabetes, 10, 589-599.
https://doi.org/10.1111/1753-0407.12634
[12] 严玲玲, 林树云, 马丽丽. 达格列净联合二甲双胍治疗2型糖尿病的临床疗效和安全性[J]. 临床合理用药杂志, 2022, 15(16): 91-93.
[13] 马静. 达格列净治疗2型糖尿病患者的应用进展[J]. 现代诊断与治疗, 2021, 32(16): 2544-2545, 2589.
[14] Cai, X., Yang, W., Gao, X., et al. (2018) The Association between the Dosage of SGLT2 Inhibitor and Weight Re-duction in Type 2 Diabetes Patients: A Meta-Analysis. Obesity, 26, 70-80.
https://doi.org/10.1002/oby.22066
[15] Chen, M.B., Wang, H., Cui, W.Y., Xu, H.L., et al. (2021) Effect of SGLT Inhibitors on Weight and Lipid Metabolism at 24 Weeks of Treatment in Patients with Diabetes Mellitus: A Systematic Review and Network Meta-Analysis. Medicine, 100, e24593.
https://doi.org/10.1097/MD.0000000000024593
[16] Sternlicht, H. and Bakris, G.L. (2019) Blood Pressure Lowering and Sodium-Glucose Co-Transporter 2 Inhibitors (SGLT2is): More Than Osmotic Diuresis. Current Hypertension Reports, 21, Article No. 12.
https://doi.org/10.1007/s11906-019-0920-4
[17] Jia, G. and Sowers, J.R. (2021) Hypertension in Diabetes: An Update of Basic Mechanisms and Clinical Disease. Hypertension, 78, 1197-1205.
https://doi.org/10.1161/HYPERTENSIONAHA.121.17981
[18] Morisco, C., Condorelli, G., Trimarco, V., et al. (2005) Akt Mediates the Cross-Talk Between β-Adrenergic and Insulin Receptors in Neonatal Cardiomyocytes. Circulation Research, 96, 180-188.
https://doi.org/10.1161/01.RES.0000152968.71868.c3
[19] Hao, Z., Sun, Y., Wen, Y., et al. (2020) Effects and Mecha-nisms of Dapagliflozin Treatment on Ambulatory Blood Pressure in Diabetic Patients with Hypertension. Medical Science Mon-itor, 26, e925987.
https://doi.org/10.12659/MSM.925987
[20] Gallo, L.A., Ward, M.S., Fotheringham, A.K., et al. (2016) Once Daily Ad-ministration of the SGLT2 Inhibitor, Empagliflozin, Attenuates Markers of Renal Fibrosis without Improving Albuminuria in Diabetic db/db Mice. Scientific Reports, 6, Article No. 26428.
https://doi.org/10.1038/srep26428
[21] Kravtsova, O., Bohovyk, R., Levchenko, V., et al. (2022) SGLT2 Inhibition Effect on Salt-Induced Hypertension, RAAS, and Na+ Transport in Dahl SS Rats. American Journal of Physiology-Renal Physiology, 322, F692-F707.
https://doi.org/10.1152/ajprenal.00053.2022
[22] 张楠, 阮丹杰, 刘新颖, 等. 达格列净对2型糖尿病合并高血压患者醛固酮/肾素浓度比值的影响[J]. 中华糖尿病杂志, 2022, 14(1): 63-67.
[23] Akash, M.S.H., Rehman, K. and Liaqat, A. (2018) Tumor Necrosis Factor-α: Role in Development of Insulin Resistance and Pathogenesis of Type 2 Diabetes Mellitus. Journal of Cellular Biochemistry, 119, 105-110.
https://doi.org/10.1002/jcb.26174
[24] Akbari, M. and Hassan-Zadeh, V. (2018) IL-6 Signalling Pathways and the De-velopment of Type 2 Diabetes. Inflammopharmacology, 26, 685-698.
https://doi.org/10.1007/s10787-018-0458-0
[25] Nedosugova, L.V., Markina, Y.V., Bochkareva, L.A., et al. (2022) In-flammatory Mechanisms of Diabetes and Its Vascular Complications. Biomedicines, 10, Article 1168.
https://doi.org/10.3390/biomedicines10051168
[26] Wang, C., Qin, Y., Zhang, X., et al. (2022) Effect of Dapagliflozin on Indicators of Myocardial Fibrosis and Levels of Inflammatory Factors in Heart Failure Patients. Disease Markers, 2022, Article ID: 5834218.
https://doi.org/10.1155/2022/5834218
[27] Contreras-Bolívar, V., García-Fontana, B., García-Fontana, C. and Muñoz-Torres, M. (2021) Mechanisms Involved in the Relationship between Vitamin D and Insulin Resistance: Impact on Clinical Practice. Nutrients, 13, Article 3491.
https://doi.org/10.3390/nu13103491
[28] 骆莹莹, 黄若妃, 李可. 达格列净对2型糖尿病患者25(OH)D_3及炎症因子表达的影响[J]. 重庆医学, 2022, 51(12): 2024-2027.
[29] 赵梦萍, 孔祥栋, 陈肖蓉, 等. 达格列净治疗早期糖尿病肾病的疗效及对血清TNF-α、IL-6水平的影响[J]. 中国现代医生, 2022, 60(14): 33-36.
[30] Leoncini, G., Russo, E., Bus-salino, E., Barnini, C., et al. (2021) SGLT2is and Renal Protection: From Biological Mechanisms to Real-World Clinical Bene-fits. International Journal of Molecular Sciences, 22, Article 4441.
https://doi.org/10.3390/ijms22094441
[31] Ambarsari, C.G., Pardede, S.O., Fazlur Rahman, F.H., et al. (2021) Role of Dipstick Albuminuria in Progression of Paediatric Chronic Kidney Disease. Journal of the Pakistan Medical Association, 71, S103-S106.
[32] Wu, L., Liu, C., Chang, D.Y., et al. (2021) Annexin A1 Alleviates Kidney Injury by Promoting the Resolu-tion of Inflammation in Diabetic Nephropathy. Kidney International, 100, 107-121.
https://doi.org/10.1016/j.kint.2021.02.025
[33] Kelly, M.S., Lewis, J., Huntsberry, A.M., Dea, L. and Portillo, I. (2019) Efficacy and Renal Outcomes of SGLT2 Inhibitors in Patients with Type 2 Diabetes and Chronic Kidney Disease. Postgraduate Medicine, 131, 31-42.
https://doi.org/10.1080/00325481.2019.1549459
[34] Bailey, C.J., Day, C. and Bellary, S. (2022) Renal Protection with SGLT2 Inhibitors: Effects in Acute and Chronic Kidney Disease. Current Diabetes Reports, 22, 39-52.
https://doi.org/10.1007/s11892-021-01442-z
[35] Kanbay, M., Tapoi, L., Ureche, C., et al. (2022) Effect of Sodi-um-Glucose Cotransporter 2 Inhibitors on Hemoglobin and Hematocrit Levels in Type 2 Diabetes: A Systematic Review and Meta-Analysis. International Urology and Nephrology, 54, 827-841.
https://doi.org/10.1007/s11255-021-02943-2
[36] Heerspink, H.J., Stefánsson, B.V., Correa-Rotter, R., et al. (2020) Dapagliflozin in Patients with Chronic Kidney Disease. The New England Journal of Medicine, 383, 1436-1446.
https://doi.org/10.1056/NEJMoa2024816
[37] Heerspink, H.J.L., Jongs, N., Chertow, G.M., et al. (2021) Effect of Dapagliflozin on the Rate of Decline in Kidney Function in Patients with Chronic Kidney Disease with and without Type 2 Dia-betes: A Prespecified Analysis from the DAPA-CKD Trial. The Lancet Diabetes & Endocrinology, 9, 743-754.
https://doi.org/10.1016/S2213-8587(21)00242-4
[38] American Diabetes Association Professional Practice Committee (2022) 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2022. Diabetes Care, 45, S125-S143.
https://doi.org/10.2337/dc22-S009
[39] Wiviott, S.D., Raz, I., Bonaca, M.P., et al. (2019) Dapagliflozin and Cardiovascu-lar Outcomes in Type 2 Diabetes. The New England Journal of Medicine, 380, 347-357.
https://doi.org/10.1056/NEJMoa1812389
[40] Zelniker, T.A., Bonaca, M.P., Furtado, R.H., et al. (2020) Effect of Dapagliflozin on Atrial Fibrillation in Patients with Type 2 Diabetes Mellitus: Insights from the DECLARE-TIMI 58 Trial. Cir-culation, 141, 1227-1234.
https://doi.org/10.1161/CIRCULATIONAHA.119.044183
[41] Ong, H.T., Teo, Y.H., Teo, Y.N., et al. (2022) Effects of Sodium/Glucose Cotransporter Inhibitors on Atrial Fibrillation and Stroke: A Meta-Analysis. Journal of Stroke and Cerebro-vascular Diseases, 31, Article ID: 106159.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106159
[42] McMurray, J.J.V., Solomon, S.D., Inzucchi, S.E., et al. (2019) Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. The New England Journal of Medicine, 381, 1995-2008.
https://doi.org/10.1056/NEJMoa1911303
[43] Vaduganathan, M., Docherty, K.F., Claggett, B.L., et al. (2022) SGLT-2 Inhibitors in Patients with Heart Failure: A Comprehensive Meta-Analysis of Five Randomised Controlled Trials. The Lancet, 400, 757-767.
https://doi.org/10.1016/S0140-6736(22)01429-5
[44] Solomon, S.D., McMurray, J.J.V., Claggett, B., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. The New England Journal of Medicine, 387, 1089-1098.
https://doi.org/10.1056/NEJMoa2206286
[45] Jhund, P.S., Kondo, T., Butt, J.H., et al. (2022) Dapagliflozin across the Range of Ejection Fraction in Patients with Heart Failure: A Patient-Level, Pooled Meta-Analysis of DAPA-HF and DELIVER. Nature Medicine, 28, 1956-1964.
https://doi.org/10.1038/s41591-022-01971-4
[46] Lopaschuk, G.D. and Verma, S. (2020) Mechanisms of Cardiovascular Benefits of Sodium Glucose Co-Transporter 2 (SGLT2) Inhibitors: A State-of-the-Art Review. JACC: Basic to Translational Science, 5, 632-644.
https://doi.org/10.1016/j.jacbts.2020.02.004
[47] Grandoch, M., Kohlmorgen, C., Melchior-Becker, A., et al. (2016) Loss of Biglycan Enhances Thrombin Generation in Apolipoprotein E-Deficient Mice: Implications for Inflammation and Atheroscle-rosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, e41-e50.
https://doi.org/10.1161/ATVBAHA.115.306973
[48] Kohlmorgen, C., Gerfer, S., Feldmann, K., et al. (2021) Dapagli-flozin Reduces Thrombin Generation and Platelet Activation: Implications for Cardiovascular Risk Reduction in Type 2 Diabetes Mellitus. Diabetologia, 64, 1834-1849.
https://doi.org/10.1007/s00125-021-05498-0
[49] Lee, T.M., Chang, N.C. and Lin, S.Z. (2017) Dapagliflozin, a Selective SGLT2 Inhibitor, Attenuated Cardiac Fibrosis by Regulating the Macrophage Polarization via STAT3 Signaling in Infarcted Rat Hearts. Free Radical Biology and Medicine, 104, 298-310.
https://doi.org/10.1016/j.freeradbiomed.2017.01.035
[50] Baartscheer, A., Schumacher, C.A., Wüst, R.C., et al. (2017) Empagliflozin Decreases Myocardial Cytoplasmic Na+ through Inhibition of the Cardiac Na+/H+ Exchanger in Rats and Rabbits. Diabetologia, 60, 568-573.
https://doi.org/10.1007/s00125-016-4134-x
[51] Chung, Y.J., Park, K.C., Tokar, S., et al. (2021) Off-Target Effects of Sodium-Glucose Co-Transporter 2 Blockers: Empagliflozin Does Not Inhibit Na+/H+ Exchanger-1 or Lower [Na+]i in the Heart. Cardiovascular Research, 117, 2794-2806.
https://doi.org/10.1093/cvr/cvaa323
[52] Xu, B., Li, S.Q., Kang, B. and Zhou, J.C. (2022) The Current Role of Sodium-Glucose Cotransporter 2 Inhibitors in Type 2 Diabetes Mellitus Management. Cardiovascular Diabetology, 21, Article No. 83.
https://doi.org/10.1186/s12933-022-01512-w
[53] Davidson, J.A., Sukor, N., Hew, F.L., Mohamed, M. and Hussein, Z. (2023) Safety of Sodium-Glucose Cotransporter 2 Inhibitors in Asian Type 2 Diabetes Populations. Journal of Diabetes Investigation, 14, 167-182.
https://doi.org/10.1111/jdi.13915
[54] Chowdhury, T., Gousy, N., Bellamkonda, A., et al. (2022) Fournier’s Gangrene: A Coexistence or Consanguinity of SGLT-2 Inhibitor Therapy. Cureus, 14, e27773.
https://doi.org/10.7759/cureus.27773
[55] Qiu, M., Ding, L.L., Zhang, M. and Zhou, H.R. (2021) Safety of Four SGLT2 Inhibitors in Three Chronic Diseases: A Meta-Analysis of Large Randomized Trials of SGLT2 Inhibitors. Diabetes and Vascu-lar Disease Research, 18, No. 2.
https://doi.org/10.1177/14791641211011016
[56] Hapca, S., Siddiqui, M.K., Kwan, R.S.Y., et al. (2021) The Relation-ship between AKI and CKD in Patients with Type 2 Diabetes: An Observational Cohort Study. Journal of the American Society of Nephrology, 32, 138-150.
https://doi.org/10.1681/ASN.2020030323
[57] Zhuo, M., Paik, J.M., Wexler, D.J., et al. (2022) SGLT2 Inhibitors and the Risk of Acute Kidney Injury in Older Adults with Type 2 Diabetes. American Journal of Kidney Diseases, 79, 858-867.E1.
https://doi.org/10.1053/j.ajkd.2021.09.015