撤稿:肿瘤癌细胞又一杀手——甲酸钠和草酸
The Another Killer of Cancer Cells—Sodium Forma Formate and Oxalic Acid
DOI: 10.12677/OJNS.2023.115101, PDF, HTML,   
作者: 储卫玲, 叶晓丹, 王晓燕, 张千峰*:安徽工业大学,分子工程与应用化学研究所,安徽 马鞍山
关键词: 甲酸钠草酸糖酵解肿瘤癌症Sodium Formate Oxalic Acid Glycolysis Tumor Cancer
摘要: 撤稿声明: “肿瘤癌细胞又一杀手——甲酸钠和草酸”一文刊登在2023年9月出版的《自然科学》2023年第11卷第5期第848-853页上。由于数据支撑不足,根据国际出版流程,编委会现决定撤除此稿件,保留原出版出处: 储卫玲, 叶晓丹, 王晓燕, 张千峰. 肿瘤癌细胞又一杀手——甲酸钠和草酸[J]. 自然科学, 2023, 11(5): 848-853. https://doi.org/10.12677/OJNS.2023.115101 并对此撤稿带来的不便致以歉意。
文章引用:储卫玲, 叶晓丹, 王晓燕, 张千峰. 撤稿:肿瘤癌细胞又一杀手——甲酸钠和草酸[J]. 自然科学, 2023, 11(5): 848-853. https://doi.org/10.12677/OJNS.2023.115101

参考文献

[1] Chrzanowska, M., Katafias, A. and Eldik, R.V. (2020) Can a Nonorganometallic Ruthenium(II) Polypyridylamine Complex Catalyze Hydride Transfer? Mechanistic Insight from Solution Kinetics on the Reduction of Coenzyme NAD+ by Formate. Inorganic Chemistry, 59, 14944-14953. [Google Scholar] [CrossRef] [PubMed]
[2] Vander Heiden, M.G., Cantley, L.C. and Thompson, C.B. (2009) Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation. Science, 324, 1029-1033. [Google Scholar] [CrossRef] [PubMed]
[3] Lemberg, K.M., Gori, S.S., Tsukamoto, T., Rais, R. and Slusher, B.S. (2022) Clinical Development of Metabolic Inhibitors for Oncology. Journal of Clinical Investi-gation, 132, e148550. [Google Scholar] [CrossRef
[4] Peng, J., Cui, Y., Xu, S., Wu, X., Huang, Y., Zhou, W., Wang, S., Fu, Z. and Xie, H. (2021) Altered Glycolysis Results in Drug-Resistant in Clinical Tumor Therapy. Oncology Letters, 21, Article No. 369. [Google Scholar] [CrossRef] [PubMed]
[5] Fiorillo, M., Ozsvari, B., Sotgia, F. and Lisanti, M.P. (2021) High ATP Production Fuels Cancer Drug Resistance and Metastasis: Implications for Mitochondrial ATP Depletion Therapy. Frontiers in Oncology, 11, Article 740720. [Google Scholar] [CrossRef] [PubMed]
[6] Vultaggio-Poma, V., Sarti, A.C. and Di Virgilio, F. (2020) Ex-tracellular ATP: A Feasible Target for Cancer Therapy. Cells, 9, Article No. 2496. [Google Scholar] [CrossRef] [PubMed]
[7] Wang, T., Ma, F. and Qian, H.L. (2021) Defueling the Cancer: ATP Synthase as an Emerging Target in Cancer Therapy. Molecular Therapy—Oncolytics, 23, 82-95. [Google Scholar] [CrossRef] [PubMed]
[8] Alkhathami, A.G., Sahib, A.S., Al Fayi, M.S, Fadhil, A.A., Jawad, M.A., Shafik, S.A., Sultan, S.J., Almulla, A.F. and Shen, M. (2023) Glycolysis in Human Cancers: Emphasis circRNA/Glycolysis Axis and Nanoparticles in Glycolysis Regulation in Cancer Therapy. Environmental Research, 234, Article ID: 116007. [Google Scholar] [CrossRef] [PubMed]
[9] Almouhanna, F., Blagojevic, B., Can, S., Ghanem, A. and Wolfl, S. (2021) Pharmacological Activation of Pyruvate Kinase M2 Reprograms Glycolysis Leading to TXNIP Depletion and AMPK Activation in Breast Cancer Cells. Cancer & Metabolism, 9, Article No. 5. [Google Scholar] [CrossRef] [PubMed]
[10] Shin, E. and Koo, J.S. (2021) Glucose Metabolism and Glucose Transporters in Breast Cancer. Frontiers in Cell and Developmental Biology, 9, Article 728759. [Google Scholar] [CrossRef] [PubMed]
[11] Weng, H.-C., Sung, C.-J., Hsu, J.-L., Leu, W.-J., Guh, J.-H., Kung, F.-L. and Hsu, L.-C. (2022) The Combination of a Novel GLUT1 Inhibitor and Cisplatin Synergistically In-hibits Breast Cancer Cell Growth by Enhancing the DNA Damaging Effect and Modulating the Akt/mTOR and MAPK Signaling Pathways. Frontiers in Pharmacology, 13, Article 879748. [Google Scholar] [CrossRef] [PubMed]
[12] Pliszka, M. and Szablewski, L. (2021) Glucose Transporters as a Target for Anticancer Therapy. Cancers, 13, Article No. 4184. [Google Scholar] [CrossRef] [PubMed]
[13] Wu, Q., Ba-Alawi, W., Deblois, G., Cruickshank, J., Duan, S., Lima-Fernandes, E., Haight, J., Tonekaboni, S.A.M., Fortier, A.M., Kuasne, H., et al. (2020) GLUT1 Inhibition Blocks Growth of RB1-Positive Triple Negative Breast Cancer. Nature Communications, 11, Article No. 4205. [Google Scholar] [CrossRef] [PubMed]
[14] Li, X., Jiang, C., Wang, Q., Yang, S., Cao, Y., Hao, J.N., Niu, D., Chen, Y., Han, B., Jia, X., et al. (2022) A “Valve- Closing” Starvation Strategy for Amplification of Tu-mor-Specific Chemotherapy. Advanced Science, 9, e2104671. [Google Scholar] [CrossRef] [PubMed]
[15] Tilekar, K., Upadhyay, N., Iancu, C., Pokrovsky, V., Choe, J.-Y. and Ramaa, C.S. (2020) Power of Two: Combination of Therapeutic Approaches Involving Glucose Transporter (GLUT) Inhibitors to Combat Cancer. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1874, Article ID: 188457. [Google Scholar] [CrossRef] [PubMed]
[16] Omar, E.M., Omran, G.A., Mustafa, M.F. and El-Khodary, N.M. (2022) Intermittent Fasting during Adjuvant Chemotherapy May Promote Differential Stress Re-sistance in Breast Cancer Patients. Journal of the Egyptian National Cancer Institute, 34, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
[17] Sun, X., Fan, T., Sun, G., Zhou, Y., Huang, Y., Zhang, N., Zhao, L., et al. (2022) 2-Deoxy-D-Glucose Increases the Sensitivity of Glioblastoma Cells to BCNU through the Regulation of Glycolysis, ROS and ERS Pathways: In Vitro and in Vivo Validation. Biochemical Pharmacology, 199, Article ID: 115029. [Google Scholar] [CrossRef] [PubMed]
[18] Zhou, N., Liu, Q., Wang, X., He, L., Zhang, T., Zhou, H., Zhu, X., Zhou, T., Deng, G. and Qiu, C. (2022) The Combination of Hydroxychloroquine and 2-Deoxyglucose Enhances Apoptosis in Breast Cancer Cells by Blocking Protective Autophagy and Sustaining Endoplasmic Reticulum Stress. Cell Death Discovery, 8, Article No. 286. [Google Scholar] [CrossRef] [PubMed]