呼吸道合胞病毒感染在唐氏综合征儿童中的研究进展
Research Progress of Respiratory Syncytial Virus Infection in Children with Down Syndrome
DOI: 10.12677/ACM.2023.13102184, PDF, HTML, XML, 下载: 296  浏览: 380  科研立项经费支持
作者: 王 蓉, 刘恩梅, 邓 昱*:重庆医科大学附属儿童医院呼吸科,国家儿童健康与疾病临床医学研究中心,儿童发育疾病研究教育部重点实验室,儿科学重庆市重点实验室,重庆
关键词: 呼吸道合胞病毒呼吸道感染唐氏综合征Respiratory Syncytial Virus Respiratory Tract Infection Down Syndrome
摘要: 呼吸道合胞病毒是引起5岁以下儿童急性下呼吸道感染最常见的病原体之一,几乎所有儿童在两岁前都会经历一次RSV感染。特殊健康状态儿童是严重RSV感染的危险因素,除先天性心脏病、支气管肺发育不良外,唐氏综合征儿童中的RSV感染受到了越来越多的关注,DS是RSV感染患儿住院和死亡的独立危险因素之一,故了解DS患儿中RSV感染的疾病负担、临床特征、发病机制、预防至关重要,本文将从以上四个方面进行综述。
Abstract: Respiratory syncytial virus (RSV) is one of the most common pathogens causing acute lower respir-atory infection (ALRI) in children under 5 years of age, and almost all children will experience an RSV infection before the age of 2 years. Children with special health status are risk factors for severe RSV infection. In addition to congenital heart disease (CHD) and bronchopulmonary dysplasia (BPD), RSV infection in children with Down syndrome (DS) has received increasing attention. DS is one of the independent risk factors for hospitalization and death in children with RSV infection. Therefore, it is very important to understand the disease burden, clinical features, pathogenesis and preven-tion of RSV infection in children with DS. This paper will review it from the above four aspects.
文章引用:王蓉, 刘恩梅, 邓昱. 呼吸道合胞病毒感染在唐氏综合征儿童中的研究进展[J]. 临床医学进展, 2023, 13(10): 15614-15620. https://doi.org/10.12677/ACM.2023.13102184

1. 引言

急性下呼吸道感染(Acute Lower Respiratory Infection, ALRI)是儿童住院的主要原因,呼吸道合胞病毒(Respiratory Syncytial Virus, RSV)是婴幼儿中最常见的病毒病原,RSV感染在全世界引起显著的发病率和死亡率 [1] 。最新疾病负担指出5岁以下儿童中,3300万例感染RSV,360万例呼吸道合胞病毒感染住院(Respiratory Syncytial Virus Hospitalization, RSVH),6个月以下的婴儿是RSV感染的易感人群 [2] ,在0~6个月的婴儿中,估计有660万例RSV感染,140万例RSVH。早期的研究几乎集中在RSVH上,但越来越多的证据表明RSV在急诊、门诊和社区内的负担越来越重 [3] ,故识别RSV感染的高危人群有助于在疾病早期精准评估病情。特殊健康状态儿童的RSVH升高,并且出现更严重的临床结局 [4] [5] [6] 。先天性心脏病(Congenital Heart Disease, CHD) [7] 、支气管肺发育不良(Bronchopulmonary Dysplasia, BPD) [8] 、早产、免疫缺陷儿童的严重RSV感染已有了广泛研究 [4] [9] [10] 。帕丽珠单抗的引入使高危人群(尤其是高危CHD和BPD)中RSVH有所下降,但不包括唐氏综合征(Down Syndrome, DS)患儿 [3] 。在合并慢性疾病(CHD、BPD、神经系统疾病、先天性呼吸道畸形、免疫缺陷及其他遗传综合征)的RSV感染患儿中,DS患儿的住院风险比其他慢性疾病高出10倍以上 [11] 。与非DS患儿相比,DS患儿发生严重RSV感染的风险更高 [10] [12] [13] [14] [15] ,因此DS患儿中的RSV感染值得广泛关注。本文将综述RSV感染在DS患儿中的疾病负担、临床特征、发病机制及预防四个方面的研究进展。

2. RSV感染在DS患儿中的疾病负担

DS是一种常见的先天性畸形,全球大约每780名新生儿中有1名患有DS [16] ,在中国每10,000 例围产儿中有1.99例被诊断为DS,浙江省DS的患病率在2013~2017年内显著增高 [17] 。与2岁以下儿童的其他出生缺陷相比,DS患儿的ALRI的发病率最高,肺炎的发病率仅次于食道闭锁 [18] 。无论是否合并其他危险因素,DS患儿均有较高的RSVH风险 [12] ,因此DS是RSVH的重要独立危险因素之一 [9] [14] [19] [20] 。最新的一项荟萃分析指出,12.6%的DS患儿曾因RSVH [12] 。与非DS患儿相比,2岁以下DS患儿RSVH的相对风险增加6.8倍 [19] 。合并DS的患儿通常发生更严重的RSV感染 [10] [12] [14] [21] [22] ,其死亡风险是非DS患儿的9倍,需要氧气支持的风险是非DS患儿的6.5倍,入住重症监护病房(Intensive Care Unit, ICU)的风险是非DS患儿的2.7倍,需要呼吸机支持的风险是非DS患儿的4.7倍,住院时长平均增加4.7天 [10] 。DS患儿RSV感染的严重程度与CHD和BPD相当 [4] [7] [8] 。

3. RSV感染在DS患儿中的临床特征

相比于非DS患儿,DS患儿在生命早期入院和死亡风险很高 [16] ,其中呼吸道感染是其入院和死亡的主要原因 [14] [16] [22] [23] 。DS患儿中呼吸道症状出现的频率(30% VS 15.2%)更高,持续时间更长(8岁VS 5岁),其中流涕、鼻塞和咳嗽出现的次数更多,尤其是在年龄较小的儿童中。随着年龄的增长,以上症状在春季、夏季和秋季减少,而冬季无明显变化 [24] 。

有研究表明,在神经系统疾病(包括DS和其它疾病)中,RSV是比细菌更常见的引起社区获得性肺炎的原因 [14] [22] 。DS患儿因RSVH的风险持续到2岁以上 [14] [21] 。因RSVH的DS患儿中,男孩更多,更易合并一个或多个RSV感染的危险因素,其中以CHD和肺动脉高压(Pulmonary Hypertension, PH)常见,而合并症的累积数量是RSV严重感染及住院病程延长的预测因素 [11] 。在RSVH的儿童中,DS儿童出现发热的频率更高,胸部X光检查报告实变更多,住院期间需更频繁使用支气管扩张剂治疗改善临床症状 [25] ,使用抗生素和皮质类固醇激素的风险也较非DS儿童更高 [10] 。与非DS患儿相比,RSV相关毛细支气管炎和肺炎出现严重并发症的概率在DS患儿中更高 [20] 。有学者分析了RSV全球数据库中DS患儿因RSV感染死亡的临床特征,发现71.7%的患儿在婴儿期死亡,主要临床表现为呼吸困难和咳嗽 [26] 。

4. DS患儿严重呼吸道感染的发病机制

RSV感染在DS患儿中临床结局更差,其主要机制可能与共病、先天解剖及生理异常和免疫缺陷相关。

4.1. DS患儿的共病

DS影响身体多个系统,特别是肌肉骨骼、神经和心血管系统 [27] 。超过60%的DS婴儿合并CHD,间隔缺陷(房室间隔缺损最常见,其次是室间隔缺损与房间隔缺损)多见 [28] 。DS患儿发生PH的风险更高,其总体患病率为25.5% [29] 。全球DS患者终生癫痫的临床患病率为1.6%~23.1%,其中婴儿痉挛症是DS婴儿中最常见的癫痫发作类型 [30] [31] 。DS患儿发生先天性气道发育异常、急性淋巴细胞白血病和急性髓系白血病的机会显著高于非DS患儿 [32] [33] 。食道闭锁和气管食管瘘在DS人群中虽然不太常见,但其患病率高于普通人群 [28] 。既往研究表明以上共病均是RSV严重感染的高危因素 [5] [9] [34] 。因此与非DS患儿相比,DS患儿发生严重RSV感染的机制与共病息息相关,但目前的研究证据尚不能完全定论共病在DS患儿严重呼吸道感染中的作用。

4.2. DS患儿的解剖及生理异常

一项关于DS患儿内窥镜检查的研究显示,71%的DS患者存在先天性气道发育异常,最常见的类型是气道软化。DS患儿中20%合并多种气道发育异常。而对照组中68%的儿童均没有发现气道发育异常 [35] 。气管型支气管在DS患儿中发生率也高于非DS患儿 [35] ,其主要发生在右侧气道,易导致反复肺炎和慢性肺不张 [36] 。尽管DS患儿鼻纤毛的超微结构和功能正常,但其纤毛搏动频率和运动减少,从而使呼吸道粘液分泌增加 [36] 。在呼气时呼吸道软化和先天性气道狭窄 [37] 可能会进一步阻碍分泌物的有效清除,进而导致反复呼吸道感染 [38] 。同时,呼吸道软化与其他解剖异常如巨舌症及扁桃体肥大 [39] 增加了DS患儿中阻塞性睡眠呼吸暂停的发病率。睡眠呼吸暂停的患者中出现慢性间歇性低氧和呼吸性酸中毒可导致PH和肺心病,从而发生更严重的呼吸道感染。DS患儿发生颌面部畸形的风险是非DS患儿的5倍以上,由于肌张力低下和先天性颌面部解剖异常,患有DS的患儿发生误吸和吞咽困难的风险明显增加 [14] [23] ,其肺炎的发生与此有关 [14] [22] 。

除此之外,DS患儿出生后存在肺发育不良 [36] [39] 。与非DS患儿相比,21号染色体特异性的抗血管生成因子导致DS患儿出现肺泡简化及肺血管生长异常的几率增加。肺泡简化表现为肺泡数量减少、肺泡腔扩大、分支形成减少、腺泡复杂性降低、肺血管生长异常即持续存在明显的双毛细血管网络。肺内支气管–肺吻合及胸膜下囊肿在DS患儿中多见,这些肺发育异常可能加剧感染时的低氧血症,从而增加了DS患儿PH的发病率。

4.3. DS患儿的免疫缺陷

DS是与免疫缺陷相关的最常见的遗传综合征,其免疫紊乱涉及多个方面。

4.3.1. DS患儿的固有免疫失调

中性粒细胞在针对多种微生物的一线宿主防御机制中发挥着关键作,但DS患儿的中性粒细胞存在先天缺陷。细胞内钙离子([Ca2+]i)在中性粒细胞反应(如吞噬作用、趋化和氧自由基产生)中发挥重要作用,DS患儿接受细菌肽(N-甲酰基–甲硫氨酰–亮氨酰–苯丙氨酸)刺激后其细胞内Ca2+浓度升高且Ca2+反应延长,导致了中性粒细胞的吞噬作用受损及对感染的易感性增加。除此之外,DS患儿中性粒细胞数量明显减少,且有研究报道DS患儿中性粒细胞CD11b受体在基线水平显著降低,但在脂多糖刺激后可明显升高 [40] ,这表明中性粒细胞迁移和粘附的能力在DS患儿中受到损害。同时有研究表明粒细胞凋亡在DS患儿中加速,这些特点均使DS患儿在感染时发生更有害的炎症反应 [16] 。

DS患儿单核细胞趋化性明显降低,与其年龄、性别及发育水平无关 [16] ,且其绝对数也显著低于对照组。有研究报道DS患儿可能还存在促炎细胞因子调节失调。在所有年龄段的DS儿童中非典型单核细胞(CD14dimCD16+)的百分比增加,其绝对数为正常对照组的1.5倍 [41] 。非典型单核细胞是一种促炎细胞,主要产生IL-1β和肿瘤坏死因子α,在急慢性疾病中非典型单核细胞的数量均有增加,可加重局部炎症。除此之外,各年龄组DS患儿自然杀伤细胞绝对数均低于对照组,恒定自然杀伤T细胞绝对数比对照组低3倍 [41] 。

Toll样受体(Toll-like receptors, TLR)是模式识别受体,它在先天免疫的激活和适应性免疫的启动之间建立联系。TLR在免疫细胞中大量表达,其信号通路对启动适应性免疫反应至关重要 [42] 。TLR信号通路的病理激活或失调在DS患儿中多见,导致炎症分子和氧化物质的产生加剧,与感染或急性败血症期间较差的临床结局有关 [16] 。

4.3.2. DS患儿的获得性免疫失调

在婴儿期,循环中的T淋巴细胞及B淋巴细胞数量会逐渐增长,但DS患儿缺乏这种免疫变化。据报道,DS患儿胸腺比非DS儿童小,携带T细胞受体-αβ的T细胞百分比减少,初始T细胞百分比相对减少,导致轻度到中度的淋巴细胞减少 [43] 。作为胸腺输出初始细胞的标志,DS儿童的T细胞受体切除环(T cell receptor excision loop, TREC)的减少也提示初始T淋巴细胞减少。虽然随着DS患儿生长发育T淋巴细胞数量逐渐增加,并可接近正常范围,但B淋巴细胞水平仍显著低于正常儿童 [43] 。CD19复合体调节B细胞受体信号的变化可能会影响免疫球蛋白的产生和抗体反应。研究表明CD19的中位免疫荧光强度在DS患儿各年龄组均降低,转换记忆B细胞和自然效应B细胞的数量显著减少,因此DS儿童的B淋巴细胞存在固有缺陷,这可能是严重呼吸道感染易感性增加的原因 [44] 。

5. DS患儿感染RSV的预防

目前针对RSV感染尚无有效的推荐治疗药物,至今也无上市疫苗。帕丽珠单抗是目前唯一获得批准的预防需要住院的高危婴儿严重RSV感染的干预药物 [3] [13] 。虽然越来越多的证据表明DS是严重RSV感染的独立危险因素,但美国儿科协会最新的推荐却不建议对DS患儿进行常规预防,仅允许在合并高危CHD、BDP、呼吸道清除异常或早产的DS患儿中使用帕丽珠单抗进行RSV感染的预防 [3] 。在以往的报道中,≤24月龄DS患儿中未接受帕丽珠单抗治疗的RSVH发生率为9.9%~19.5% [20] ,接受帕利珠单抗治疗后RSVH发生率为1.2%~4.1% [13] ,帕利珠单抗预防可有效降低DS患儿的RSVH发病率 [3] 。在日本,帕丽珠单抗已被批准用于所有DS患儿,尽管其获批后≤24月龄DS患儿累计RSVH率的下降趋势不显着,但是在没有明显合并症(无CHD且出生时胎龄 ≥ 36周)的DS患儿中RSVH率的下降具有统计学意义,且作者发现接受帕丽珠单抗治疗的DS患儿的住院和氧气治疗总天数少于未接受帕丽珠单抗治疗的患儿 [13] 。一项加拿大和荷兰的联合前瞻性研究表明,帕丽珠单抗预防与RSVH降低3.6倍相关,且在接受预防的患儿中RSV感染的严重程度降低 [20] 。然而,目前尚无荟萃分析报告帕丽珠单抗在DS患儿中减少严重RSV感染方面的有效性。因此仍需要更多的研究来证实帕丽珠单抗用于预防DS患儿RSVH及重症RSV感染的有效性。

基金项目

重庆市自然科学基金(cstc2019jcyj-msxmX0858);重庆市人力资源和社会保障局留学人员回国创业创新支持计划(cx2019068);重庆市教育委员会科学技术研究计划(KJQN202000431);重庆市科卫联合医学科研项目(渝卫发[2020] 65号-2020FYYX086);国家重点研发计划(2022YFC2704900);重庆医科大学未来医学青年创新团队支持计划。

参考文献

NOTES

*通讯作者。

参考文献

[1] Hu, M., Bogoyevitch, M.A. and Jans, D.A. (2020) Impact of Respiratory Syncytial Virus Infection on Host Functions: Implications for Antiviral Strategies. Physiological Reviews, 100, 1527-1594.
https://doi.org/10.1152/physrev.00030.2019
[2] Li, Y., Wang, X., Blau, D.M., et al. (2022) Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections Due to Respiratory Syncytial Virus in Chil-dren Younger than 5 Years in 2019: A Systematic Analysis. The Lancet, 399, 2047-2064.
https://doi.org/10.1016/S0140-6736(22)00478-0
[3] Luna, M.S., Manzoni, P., Paes, B., et al. (2020) Expert Consensus on Palivizumab Use for Respiratory Syncytial Virus in Developed Countries. Paediatric Respiratory Reviews, 33, 35-44.
https://doi.org/10.1016/j.prrv.2018.12.001
[4] Thwaites, R., Buchan, S., Fullarton, J., et al. (2020) Clinical Burden of Severe Respiratory Syncytial Virus Infection during the First 2 Years of Life in Children Born be-tween 2000 and 2011 in Scotland. European Journal of Pediatrics, 179, 791-799.
https://doi.org/10.1007/s00431-019-03564-9
[5] Cai, W., Buda, S., Schuler, E., et al. (2020) Risk Factors for Hospitalized Respiratory Syncytial Virus Disease and Its Severe Outcomes. Influenza and Other Respiratory Viruses, 14, 658-670.
https://doi.org/10.1111/irv.12729
[6] Shi, T., Vennard, S., Mahdy, S., Nair, H. and RESCEU Investi-gators (2022) Risk Factors for Poor Outcome or Death in Young Children with Respiratory Syncytial Virus-Associated Acute Lower Respiratory Tract Infection: A Systematic Review and Meta-Analysis. The Journal of Infectious Diseases, 226, S10-S16.
https://doi.org/10.1093/infdis/jiaa751
[7] Chaw, P.S., Wong, S.W.L., Cunningham, S., et al. (2020) Acute Lower Respiratory Infections Associated with Respiratory Syncytial Virus in Children with Underlying Congenital Heart Dis-ease: Systematic Review and Meta-Analysis. The Journal of Infectious Diseases, 222, S613-S619.
[8] Chaw, P.S., Hua, L., Cunningham, S., et al. (2020) Respiratory Syncytial Virus-Associated Acute Lower Respiratory Infections in Children with Bronchopulmonary Dysplasia: Systematic Review and Meta-Analysis. The Journal of Infectious Diseases, 222, S620-S627
[9] Manzoni, P., Figueras-Aloy, J., Simões, E.A.F., et al. (2017) Defining the Incidence and Associ-ated Morbidity and Mortality of Severe Respiratory Syncytial Virus Infection among Children with Chronic Diseases. Infectious Diseases and Therapy, 6, 383-411.
https://doi.org/10.1007/s40121-017-0160-3
[10] Beckhaus, A.A. and Castro-Rodriguez, J.A. (2018) Down Syndrome and the Risk of Severe RSV Infection: A Meta-Analysis. Pediatrics, 142, e20180225.
https://doi.org/10.1542/peds.2018-0225
[11] Shmueli, E., Goldberg, O., Mei-Zahav, M., et al. (2021) Risk Factors for Respiratory Syncytial Virus Bronchiolitis Hospitalizations in Children with Chronic Diseases. Pediatric Pulmonology, 56, 2204-2211.
https://doi.org/10.1002/ppul.25435
[12] Mitra, S., El Azrak, M., McCord, H. and Paes, B.A. (2018) Hospitaliza-tion for Respiratory Syncytial Virus in Children with Down Syndrome Less than 2 Years of Age: A Systematic Review and Meta-Analysis. The Journal of Pediatrics, 203, 92-100.E3.
https://doi.org/10.1016/j.jpeds.2018.08.006
[13] Okamoto, K., Morio, T., Nakamura, Y., et al. (2021) Hospitalisa-tions Due to Respiratory Syncytial Virus Infection in Children with Down Syndrome before and after Palivizumab Rec-ommendation in Japan. Acta Paediatrica, 110, 1299-1306.
https://doi.org/10.1111/apa.15641
[14] Santoro, S.L., Chicoine, B., Jasien, J.M., et al. (2021) Pneumonia and Respiratory Infections in Down Syndrome: A Scoping Review of the Literature. American Journal of Medical Genetics Part A, 185, 286-299.
https://doi.org/10.1002/ajmg.a.61924
[15] Ramphul, K., Mejias, S.G. and Joynauth, J. (2019) Children Less than 2 with Down Syndrome and Suffering from Respiratory Syncytial Virus Have a Longer and More Costly Hospitalization. The Journal of Pediatrics, 206, 302.
https://doi.org/10.1016/j.jpeds.2018.11.047
[16] Illouz, T., Biragyn, A., Iulita, M.F., et al. (2021) Immune Dysreg-ulation and the Increased Risk of Complications and Mortality following Respiratory Tract Infections in Adults with Down Syndrome. Frontiers in Immunology, 12, Article 621440.
https://doi.org/10.3389/fimmu.2021.621440
[17] Zhang, X., Chen, L., Wang, X., et al. (2020) Changes in Maternal Age and Prevalence of Congenital Anomalies during the Enactment of China’s Universal Two-Child Policy (2013-2017) in Zhejiang Province, China: An Observational Study. PLOS MEDICINE, 17, e1003047.
https://doi.org/10.1371/journal.pmed.1003047
[18] Jama-Alol, K.A., Moore, H.C., Jacoby, P., Bower, C. and Lehmann, D. (2014) Morbidity Due to Acute Lower Respiratory Infection in Children with Birth Defects: A Total Popu-lation-Based Linked Data Study. BMC Pediatrics, 14, Article No. 80.
https://doi.org/10.1186/1471-2431-14-80
[19] Chan, M., Park, J.J., Shi, T., et al. (2017) The Burden of Respirato-ry Syncytial Virus (RSV) Associated Acute Lower Respiratory Infections in Children with Down Syndrome: A System-atic Review and Meta-Analysis. Journal of Global Health, 7, Article ID: 020413.
https://doi.org/10.7189/jogh.07.020413
[20] Yi, H., Lanctôt, K.L., Bont, L., et al. (2014) Respiratory Syncytial Vi-rus Prophylaxis in Down Syndrome: A Prospective Cohort Study. Pediatrics, 133, 1031-1037.
https://doi.org/10.1542/peds.2013-3916
[21] Stagliano, D.R., Nylund, C.M., Eide, M.B. and Eberly, M.D. (2015) Children with Down Syndrome Are High-Risk for Severe Respiratory Syncytial Virus Disease. The Journal of Pediat-rics, 166, 703-709.e2.
https://doi.org/10.1016/j.jpeds.2014.11.058
[22] Blake, J.M., Estrada Gomez, D., Skotko, B.G., Torres, A. and Santoro, S.L. (2021) Pneumonia and Respiratory Infection in Down Syndrome: A 10-Year Cohort Analysis of Inpatient and Outpatient Encounters across the Lifespan. American Journal of Medical Genetics Part A, 185, 2878-2887.
https://doi.org/10.1002/ajmg.a.62355
[23] Stanley, M.A., Shepherd, N., Duvall, N., et al. (2019) Clinical Identifi-cation of Feeding and Swallowing Disorders in 0-6 Month Old Infants with Down Syndrome. American Journal of Medical Genetics Part A, 179, 177-182.
https://doi.org/10.1002/ajmg.a.11
[24] Eijsvoogel, N.B., Verstegen, R.H.J., van Well, G.T.J., et al. (2022) In-creased Rate of Respiratory Symptoms in Children with Down Syndrome: A 2-Year Web-Based Parent-Reported Pro-spective Study. European Journal of Pediatrics, 181, 4079-4089.
https://doi.org/10.1007/s00431-022-04634-1
[25] Zachariah, P., Ruttenber, M. and Simões, E.A.F. (2012) Down Syndrome and Hospitalizations Due to Respiratory Syncytial Virus: A Population-Based Study. The Journal of Pediat-rics, 160, 827-831.e1.
https://doi.org/10.1016/j.jpeds.2011.11.004
[26] Löwensteyn, Y.N., Phijffer, E.W.E.M., Simons, J.V.L., et al. (2020) Respiratory Syncytial Virus-Related Death in Children with Down Syndrome: The RSV GOLD Study. The Pedi-atric Infectious Disease Journal, 39, 665-670.
https://doi.org/10.1097/INF.0000000000002666
[27] Antonarakis, S.E., Skotko, B.G., Rafii, M.S., et al. (2020) Down Syndrome. Nature Reviews Disease Primer. Nature Reviews Disease Primers, 6, Article No. 9.
https://doi.org/10.1038/s41572-019-0143-7
[28] Lagan, N., Huggard, D., Mc Grane, F., et al. (2020) Multiorgan Involvement and Management in Children with Down Syndrome. Acta Paediatrica, 109, 1096-1111.
https://doi.org/10.1111/apa.15153
[29] Gandy, K.C., Castillo, H.A., Ouellette, L., et al. (2020) The Relationship between Chronic Health Conditions and Cognitive Deficits in Children, Adolescents, and Young Adults with Down Syndrome: A Systematic Review. PLOS ONE, 15, e0239040.
https://doi.org/10.1371/journal.pone.0239040
[30] Kats, D.J., Roche, K.J. and Skotko, B.G. (2020) Epileptic Spasms in Individuals with Down Syndrome: A Review of the Current Literature. Epilepsia Open, 5, 344-353.
https://doi.org/10.1002/epi4.12412
[31] Santoro, J.D., Pagarkar, D., Chu, D.T., et al. (2021) Neurologic Complica-tions of Down Syndrome: A Systematic Review. Journal of Neurology, 268, 4495-4509.
https://doi.org/10.1007/s00415-020-10179-w
[32] Paes, B., Kim, D., Saleem, M., et al. (2019) Respiratory Syn-cytial Virus Prophylaxis in Infants with Congenital Airway Anomalies Compared to Standard Indications and Complex Medical Disorders. European Journal of Pediatrics, 178, 377-385.
https://doi.org/10.1007/s00431-018-03308-1
[33] Gupte, A., Al-Antary, E.T., Edwards, H., et al. (2022) The Par-adox of Myeloid Leukemia Associated with Down Syndrome. Biochemical Pharmacology, 201, Article ID: 115046.
https://doi.org/10.1016/j.bcp.2022.115046
[34] Kimura, D., McNamara, I.F., Wang, J., et al. (2019) Pulmonary Hypertension during Respiratory Syncytial Virus Bronchiolitis: A Risk Factor for Severity of Illness. Cardiology in the Young, 29, 615-619.
https://doi.org/10.1017/S1047951119000313
[35] De Lausnay, M., Verhulst, S., Boel, L., et al. (2020) The Preva-lence of Lower Airway Anomalies in Children with Down Syndrome Compared to Controls. Pediatric Pulmonology, 55, 1259-1263.
https://doi.org/10.1002/ppul.24741
[36] Alsubie, H.S. and Rosen, D. (2018) The Evaluation and Management of Respiratory Disease in Children with Down Syndrome (DS). Paediatric Respiratory Reviews, 26, 49-54.
https://doi.org/10.1016/j.prrv.2017.07.003
[37] Fockens, M.M., Hölscher, M., Limpens, J. and Dikkers, F.G. (2021) Tracheal Anomalies Associated with Down Syndrome: A Systematic Review. Pediatric Pulmonology, 56, 814-822.
https://doi.org/10.1002/ppul.25203
[38] Wang, T., Xu, Q., Dai, G., et al. (2021) Clinical Characteristics of Children with Airway Malacia Complicated by Pneumonia. BMC Infectious Diseases, 21, Article No. 902.
https://doi.org/10.1186/s12879-021-06603-9
[39] Danopoulos, S., Deutsch, G.H., Dumortier, C., Mariani, T.J. and Al Alam, D. (2021) Lung Disease Manifestations in Down Syndrome. American Journal of Physiology-Lung Cellular and Molecular Physiology, 321, L892-L899.
https://doi.org/10.1152/ajplung.00434.2020
[40] Huggard, D., McGrane, F., Lagan, N., et al. (2018) Altered En-dotoxin Responsiveness in Healthy Children with Down Syndrome. BMC Immunology, 19, Article No. 31.
https://doi.org/10.1186/s12865-018-0270-z
[41] Bloemers, B.L.P., van Bleek, G.M., Kimpen, J.L.L. and Bont, L. (2010) Distinct Abnormalities in the Innate Immune System of Children with Down Syndrome. The Journal of Pediat-rics, 156, 809.e1-809.e5.
https://doi.org/10.1016/j.jpeds.2009.12.006
[42] Huggard, D., Koay, W.J., Kelly, L., et al. (2019) Altered Toll-Like Receptor Signalling in Children with Down Syndrome. Mediators of Inflammation, 2019, Article ID: 4068734.
https://doi.org/10.1155/2019/4068734
[43] Huggard, D., Doherty, D.G. and Molloy, E.J. (2020) Immune Dysreg-ulation in Children with Down Syndrome. Frontiers in Pediatrics, 8, Article 73.
https://doi.org/10.3389/fped.2020.00073
[44] Seckin, A.N., Ozdemir, H., Ceylan, A. and Artac, H. (2018) Age-Related Alterations of the CD19 Complex and Memory B Cells in Children with Down Syndrome. Clinical and Experimental Medicine, 18, 125-131.
https://doi.org/10.1007/s10238-017-0457-2